There's no difference: Convolutional Neural Networks for transient detection without template subtraction

03/14/2022
by   Tatiana Acero-Cuellar, et al.
0

We present a Convolutional Neural Network (CNN) model for the separation of astrophysical transients from image artifacts, a task known as "real-bogus" classification, that does not rely on Difference Image Analysis (DIA) which is a computationally expensive process involving image matching on small spatial scales in large volumes of data. We explore the use of CNNs to (1) automate the "real-bogus" classification, (2) reduce the computational costs of transient discovery. We compare the efficiency of two CNNs with similar architectures, one that uses "image triplets" (templates, search, and the corresponding difference image) and one that adopts a similar architecture but takes as input the template and search only. Without substantially changing the model architecture or retuning the hyperparameters to the new input, we observe only a small decrease in model efficiency (97 investigate how the model that does not receive the difference image learns the required information from the template and search by exploring the saliency maps. Our work demonstrates that (1) CNNs are excellent models for "real-bogus" classification that rely exclusively on the imaging data and require no feature engineering task; (2) high-accuracy models can be built without the need to construct difference images. Since once trained, neural networks can generate predictions at minimal computational costs, we argue that future implementations of this methodology could dramatically reduce the computational costs in the detection of genuine transients in synoptic surveys like Rubin Observatory's Legacy Survey of Space and Time by bypassing the DIA step entirely.

READ FULL TEXT

page 3

page 9

page 10

page 11

page 12

page 20

page 22

page 26

research
10/04/2017

Effective Image Differencing with ConvNets for Real-time Transient Hunting

Large sky surveys are increasingly relying on image subtraction pipeline...
research
01/02/2017

Deep-HiTS: Rotation Invariant Convolutional Neural Network for Transient Detection

We introduce Deep-HiTS, a rotation invariant convolutional neural networ...
research
03/18/2022

Identifying Transients in the Dark Energy Survey using Convolutional Neural Networks

The ability to discover new transients via image differencing without di...
research
04/29/2019

Optical Transient Object Classification in Wide Field Small Aperture Telescopes with Neural Networks

Wide field small aperture telescopes are working horses for fast sky sur...
research
12/07/2021

Evaluating Generic Auto-ML Tools for Computational Pathology

Image analysis tasks in computational pathology are commonly solved usin...
research
09/28/2020

Detecting optical transients using artificial neural networks and reference images from different surveys

To search for optical counterparts to gravitational waves, it is crucial...
research
04/01/2021

Less is More: Accelerating Faster Neural Networks Straight from JPEG

Most image data available are often stored in a compressed format, from ...

Please sign up or login with your details

Forgot password? Click here to reset