Theory of functional principal components analysis for discretely observed data

09/19/2022
by   Hang Zhou, et al.
0

For discretely observed functional data, estimating eigenfunctions with diverging index is essential in nearly all methods based on functional principal components analysis. In this paper, we propose a new approach to handle each term appeared in the perturbation series and overcome the summability issue caused by the estimation bias. We obtain the moment bounds for eigenfunctions and eigenvalues for a wide range of the sampling rate. We show that under some mild assumptions, the moment bound for the eigenfunctions with diverging indices is optimal in the minimax sense. This is the first attempt at obtaining an optimal rate for eigenfunctions with diverging index for discretely observed functional data. Our results fill the gap in theory between the ideal estimation from fully observed functional data and the reality that observations are taken at discrete time points with noise, which has its own merits in models involving inverse problem and deserves further investigation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset