Theory of Deep Convolutional Neural Networks III: Approximating Radial Functions

07/02/2021
by   Tong Mao, et al.
0

We consider a family of deep neural networks consisting of two groups of convolutional layers, a downsampling operator, and a fully connected layer. The network structure depends on two structural parameters which determine the numbers of convolutional layers and the width of the fully connected layer. We establish an approximation theory with explicit approximation rates when the approximated function takes a composite form f∘ Q with a feature polynomial Q and a univariate function f. In particular, we prove that such a network can outperform fully connected shallow networks in approximating radial functions with Q(x) =|x|^2, when the dimension d of data from ℝ^d is large. This gives the first rigorous proof for the superiority of deep convolutional neural networks in approximating functions with special structures. Then we carry out generalization analysis for empirical risk minimization with such a deep network in a regression framework with the regression function of the form f∘ Q. Our network structure which does not use any composite information or the functions Q and f can automatically extract features and make use of the composite nature of the regression function via tuning the structural parameters. Our analysis provides an error bound which decreases with the network depth to a minimum and then increases, verifying theoretically a trade-off phenomenon observed for network depths in many practical applications.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
07/28/2020

Theory of Deep Convolutional Neural Networks II: Spherical Analysis

Deep learning based on deep neural networks of various structures and ar...
research
09/04/2018

Equivalence of approximation by convolutional neural networks and fully-connected networks

Convolutional neural networks are the most widely used type of neural ne...
research
10/14/2022

Approximation analysis of CNNs from feature extraction view

Deep learning based on deep neural networks has been very successful in ...
research
11/27/2018

A Fully Sequential Methodology for Convolutional Neural Networks

Recent work has shown that the performance of convolutional neural netwo...
research
06/23/2021

Universal Consistency of Deep Convolutional Neural Networks

Compared with avid research activities of deep convolutional neural netw...
research
02/24/2022

Optimal Learning Rates of Deep Convolutional Neural Networks: Additive Ridge Functions

Convolutional neural networks have shown extraordinary abilities in many...
research
07/13/2020

A new approach to descriptors generation for image retrieval by analyzing activations of deep neural network layers

In this paper, we consider the problem of descriptors construction for t...

Please sign up or login with your details

Forgot password? Click here to reset