Theoretical and Experimental Analysis of the Canadian Traveler Problem

02/22/2017
by   Doron Zarchy, et al.
0

Devising an optimal strategy for navigation in a partially observable environment is one of the key objectives in AI. One of the problem in this context is the Canadian Traveler Problem (CTP). CTP is a navigation problem where an agent is tasked to travel from source to target in a partially observable weighted graph, whose edge might be blocked with a certain probability and observing such blockage occurs only when reaching upon one of the edges end points. The goal is to find a strategy that minimizes the expected travel cost. The problem is known to be P# hard. In this work we study the CTP theoretically and empirically. First, we study the Dep-CTP, a CTP variant we introduce which assumes dependencies between the edges status. We show that Dep-CTP is intractable, and further we analyze two of its subclasses on disjoint paths graph. Second, we develop a general algorithm Gen-PAO that optimally solve the CTP. Gen-PAO is capable of solving two other types of CTP called Sensing-CTP and Expensive-Edges CTP. Since the CTP is intractable, Gen-PAO use some pruning methods to reduce the space search for the optimal solution. We also define some variants of Gen-PAO, compare their performance and show some benefits of Gen-PAO over existing work.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro