The Variance of Causal Effect Estimators for Binary V-structures

04/20/2020
by   Jack Kuipers, et al.
0

Adjusting for covariates is a well established method to estimate the total causal effect of an exposure variable on an outcome of interest. Depending on the causal structure of the mechanism under study there may be different adjustment sets, equally valid from a theoretical perspective, leading to identical causal effects. However, in practice, with finite data, estimators built on different sets may display different precision. To investigate the extent of this variability we consider the simplest non-trivial non-linear model of a v-structure on three nodes for binary data. We explicitly compute and compare the variance of the two possible different causal estimators. Further, by going beyond leading order asymptotics we show that there are parameter regimes where the set with the asymptotically optimal variance does depend on the edge coefficients, a result which is not captured by the recent leading order developments for general causal models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset