The Variable Projected Augmented Lagrangian Method

07/17/2022
by   Matthias Chung, et al.
0

Inference by means of mathematical modeling from a collection of observations remains a crucial tool for scientific discovery and is ubiquitous in application areas such as signal compression, imaging restoration, and supervised machine learning. The inference problems may be solved using variational formulations that provide theoretically proven methods and algorithms. With ever-increasing model complexities and growing data size, new specially designed methods are urgently needed to recover meaningful quantifies of interest. We consider the broad spectrum of linear inverse problems where the aim is to reconstruct quantities with a sparse representation on some vector space; often solved using the (generalized) least absolute shrinkage and selection operator (lasso). The associated optimization problems have received significant attention, in particular in the early 2000's, because of their connection to compressed sensing and the reconstruction of solutions with favorable sparsity properties using augmented Lagrangians, alternating directions and splitting methods. We provide a new perspective on the underlying l1 regularized inverse problem by exploring the generalized lasso problem through variable projection methods. We arrive at our proposed variable projected augmented Lagrangian (vpal) method. We analyze this method and provide an approach for automatic regularization parameter selection based on a degrees of freedom argument. Further, we provide numerical examples demonstrating the computational efficiency for various imaging problems.

READ FULL TEXT

page 14

page 17

page 21

page 22

research
09/10/2013

Compressed Sensing for Block-Sparse Smooth Signals

We present reconstruction algorithms for smooth signals with block spars...
research
05/13/2022

LASSO reloaded: a variational analysis perspective with applications to compressed sensing

This paper provides a variational analysis of the unconstrained formulat...
research
03/21/2010

The Projected GSURE for Automatic Parameter Tuning in Iterative Shrinkage Methods

Linear inverse problems are very common in signal and image processing. ...
research
03/12/2019

An Efficient Augmented Lagrangian Based Method for Constrained Lasso

Variable selection is one of the most important tasks in statistics and ...
research
05/29/2021

An ℓ_p Variable Projection Method for Large-Scale Separable Nonlinear Inverse Problems

The variable projection (VarPro) method is an efficient method to solve ...
research
07/14/2018

Sparse Relaxed Regularized Regression: SR3

Regularized regression problems are ubiquitous in statistical modeling, ...
research
07/03/2012

Robust Dequantized Compressive Sensing

We consider the reconstruction problem in compressed sensing in which th...

Please sign up or login with your details

Forgot password? Click here to reset