The Typical Non-Linear Code over Large Alphabets

05/10/2021
by   Anina Gruica, et al.
0

We consider the problem of describing the typical (possibly) non-linear code of minimum distance bounded from below over a large alphabet. We concentrate on block codes with the Hamming metric and on subspace codes with the injection metric. In sharp contrast with the behavior of linear block codes, we show that the typical non-linear code in the Hamming metric of cardinality q^n-d+1 is far from having minimum distance d, i.e., from being MDS. We also give more precise results about the asymptotic proportion of block codes with good distance properties within the set of codes having a certain cardinality. We then establish the analogous results for subspace codes with the injection metric, showing also an application to the theory of partial spreads in finite geometry.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset