DeepAI AI Chat
Log In Sign Up

The structure of quasi-transitive graphs avoiding a minor with applications to the domino problem

by   Louis Esperet, et al.

An infinite graph is quasi-transitive if its vertex set has finitely many orbits under the action of its automorphism group. In this paper we obtain a structure theorem for locally finite quasi-transitive graphs avoiding a minor, which is reminiscent of the Robertson-Seymour Graph Minor Structure Theorem. We prove that every locally finite quasi-transitive graph G avoiding a minor has a tree-decomposition whose torsos are finite or planar; moreover the tree-decomposition is canonical, i.e. invariant under the action of the automorphism group of G. As applications of this result, we prove the following. * Every locally finite quasi-transitive graph attains its Hadwiger number, that is, if such a graph contains arbitrarily large clique minors, then it contains an infinite clique minor. This extends a result of Thomassen (1992) who proved it in the 4-connected case and suggested that this assumption could be omitted. * Locally finite quasi-transitive graphs avoiding a minor are accessible (in the sense of Thomassen and Woess), which extends known results on planar graphs to any proper minor-closed family. * Minor-excluded finitely generated groups are accessible (in the group-theoretic sense) and finitely presented, which extends classical results on planar groups. * The domino problem is decidable in a minor-excluded finitely generated group if and only if the group is virtually free, which proves the minor-excluded case of a conjecture of Ballier and Stein (2018).


page 1

page 2

page 3

page 4


Approximating branchwidth on parametric extensions of planarity

The branchwidth of a graph has been introduced by Roberson and Seymour a...

All minor-minimal apex obstructions with connectivity two

A graph is an apex graph if it contains a vertex whose deletion leaves a...

Clique-coloring of K_3,3-minor free graphs

A clique-coloring of a given graph G is a coloring of the vertices of G ...

The grid-minor theorem revisited

We prove that for every planar graph X of treedepth h, there exists a po...

Grid Induced Minor Theorem for Graphs of Small Degree

A graph H is an induced minor of a graph G if H can be obtained from G b...

The Graph Isomorphism Problem: Local Certificates for Giant Action

This thesis provides an explanation of László Babai's quasi-polynomial a...

Reducing Topological Minor Containment to the Unique Linkage Theorem

In the Topological Minor Containment problem (TMC) problem two undirecte...