The strong ring of simplicial complexes

08/05/2017
by   Oliver Knill, et al.
0

We define a ring R of geometric objects G generated by finite abstract simplicial complexes. To every G belongs Hodge Laplacian H as the square of the Dirac operator determining its cohomology and a unimodular connection matrix L). The sum of the matrix entries of the inverse of L is the Euler characteristic. The spectra of H as well as inductive dimension add under multiplication while the spectra of L multiply. The nullity of the Hodge of H are the Betti numbers which can now be signed. The map assigning to G its Poincare polynomial is a ring homomorphism from R the polynomials. Especially the Euler characteristic is a ring homomorphism. Also Wu characteristic produces a ring homomorphism. The Kuenneth correspondence between cohomology groups is explicit as a basis for the product can be obtained from a basis of the factors. The product in R produces the strong product for the connection graphs and leads to tensor products of connection Laplacians. The strong ring R is also a subring of the full Stanley-Reisner ring S Every element G can be visualized by its Barycentric refinement graph G1 and its connection graph G'. Gauss-Bonnet, Poincare-Hopf or the Brouwer-Lefschetz extend to the strong ring. The isomorphism of R with a subring of the strong Sabidussi ring shows that the multiplicative primes in R are the simplicial complexes and that every connected element in the strong ring has a unique prime factorization. The Sabidussi ring is dual to the Zykov ring, in which the Zykov join is the addition. The connection Laplacian of the d-dimensional lattice remains invertible in the infinite volume limit: there is a mass gap in any dimension.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro