The Strange Attractor of Bipedal Locomotion and Consequences on Motor Control

02/10/2018
by   Carlo Tiseo, et al.
0

Despite decades of studies, the mechanism that determines human locomotion is still unknown, available models and motor control theories can only partially capture the phenomenon. This may be is probably the principal cause of the reduced efficacy of lower limbs rehabilitation therapies. Recently, it has been proposed that human locomotion may be planned in the task-space by taking advantage of the gravitational pull acting on the Centre of Mass (CoM) that we have used to formulate a task-space planner for straight locomotion at a constant speed. The proposed model represents the CoM transversal trajectory as simple harmonic oscillator moving forward at a constant speed. On the other hand, the vertical trajectory of the CoM is controlled through the ankle strategies. Our solution is composed of closed-form equations which can plan human-like trajectories for both the CoM and the foot swing. The model output can be seen as the optimal trajectory determined based on the average behaviour of 12 healthy subjects walking at three self-selected speeds. Furthermore, the planner formulation is compatible with an extended formulation of the Passive Motion Paradigm which enables us to design a hierarchical architecture of semi-autonomous controllers. The final architecture can also describe the motor primitives as a particular case of dynamic primitives, shows strong parallels with the nervous system organization, and is compatible with the optimal feedback controller theory.

READ FULL TEXT
research
08/31/2018

Bioinspired Straight Walking Task-Space Planner

Although the attention on bipedal locomotion has increased over the last...
research
09/15/2019

A Robust Closed-Loop Biped Locomotion Planner Based on Time Varying Model Predictive Control

Developing robust locomotion for humanoid robots is a complex task due t...
research
12/01/2020

Theoretical Evidence Supporting Harmonic Reaching Trajectories

Minimum Jerk trajectories have been long thought to be the reference tra...
research
05/11/2020

Autonomous learning and chaining of motor primitives using the Free Energy Principle

In this article, we apply the Free-Energy Principle to the question of m...
research
01/08/2023

Real-Time Walking Pattern Generation of Quadrupedal Dynamic-Surface Locomotion based on a Linear Time-Varying Pendulum Model

This study introduces an analytically tractable and computationally effi...
research
03/08/2021

Exploiting Spherical Projections To Generate Human-Like Wrist Pointing Movements

The mechanism behind the generation of human movements is of great inter...

Please sign up or login with your details

Forgot password? Click here to reset