The Statistical Physics of Real-World Networks

10/11/2018 ∙ by Giulio Cimini, et al. ∙ 0

Statistical physics is the natural framework to model complex networks. In the last twenty years, it has brought novel physical insights on a variety of emergent phenomena, such as self-organisation, scale invariance, mixed distributions and ensemble non-equivalence, which cannot be deduced from the behaviour of the individual constituents. At the same time, thanks to its deep connection with information theory, statistical physics and the principle of maximum entropy have led to the definition of null models reproducing some features of empirical networks, but otherwise as random as possible. We review here the statistical physics approach for complex networks and the null models for the various physical problems, focusing in particular on the analytic frameworks reproducing the local features of the network. We show how these models have been used to detect statistically significant and predictive structural patterns in real-world networks, as well as to reconstruct the network structure in case of incomplete information. We further survey the statistical physics frameworks that reproduce more complex, semi-local network features using Markov chain Monte Carlo sampling, and the models of generalised network structures such as multiplex networks, interacting networks and simplicial complexes.



There are no comments yet.


page 3

page 4

page 5

page 9

page 12

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.


  • Dorogovtsev et al. (2008) S. N. Dorogovtsev, A. V. Goltsev,  and J. F. F. Mendes, “Critical phenomena in complex networks,” Reviews of Modern Physics 80, 1275–1335 (2008).
  • Barabási and Albert (1999) A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science 286, 509–512 (1999).
  • Dorogovtsev and Mendes (2000) S. N. Dorogovtsev and J. F. F. Mendes, “Evolution of networks with aging of sites,” Physical Review E 62, 1842–1845 (2000).
  • Bianconi and Barabási (2001) G. Bianconi and A.L. Barabási, “Bose-einstein condensation in complex network,” Physical Review Letters 86, 5632–5635 (2001).
  • Caldarelli et al. (2002) G. Caldarelli, A. Capocci, P. De Los Rios,  and M. a Muñoz, “Scale-free networks from varying vertex intrinsic fitness,” Physical Review Letters 89, 258702 (2002).
  • Dorogovtsev et al. (2000) S. N. Dorogovtsev, J. F. F. Mendes,  and A. N. Samukhin, “Structure of growing networks with preferential linking,” Physical Review Letters 85, 4633–4636 (2000).
  • Yook et al. (2001) S. H. Yook, H. Jeong, A.-L. Barabási,  and Y. Tu, “Weighted evolving networks,” Physical Review Letters 86, 5835–5838 (2001).
  • Barrat et al. (2004a) A. Barrat, M. Barthélemy,  and A. Vespignani, “Weighted evolving networks: Coupling topology and weight dynamics,” Physical Review Letters 92, 228701 (2004a).
  • Newman and Girvan (2004) M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in networks,” Physical Review E 69, 026113 (2004).
  • Fortunato (2010) S. Fortunato, “Community detection in graphs,” Physics Reports 486, 75–174 (2010).
  • Watts and Strogatz (1998) D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world networks,” Nature 393, 440–442 (1998).
  • Amaral et al. (2000) L. A. N. Amaral, A. Scala, M. Barthélémy,  and H. E. Stanley, “Classes of small-world networks,” Proceedings of the National Academy of Sciences 97, 11149–11152 (2000).
  • Chung and Lu (2002a) F. Chung and L. Lu, “The average distances in random graphs with given expected degrees,” Proceedings of the National Academy of Sciences 99, 15879–15882 (2002a).
  • Albert and Barabási (2002) R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews of Modern Physics 74, 47–97 (2002).
  • Newman (2003) M. E. J. Newman, “The structure and function of complex networks,” SIAM Review 45, 167–256 (2003).
  • Boccaletti et al. (2006) S. Boccaletti, V. Latora, Y. Moreno, M. Chavez,  and D.-U. Hwang, “Complex networks: Structure and dynamics,” Physics Reports 424, 175–308 (2006).
  • Medo et al. (2011) M. Medo, G. Cimini,  and S. Gualdi, “Temporal effects in the growth of networks,” Physical Review Letters 107, 238701 (2011).
  • Holland and Leinhardt (1981) P. W. Holland and S. Leinhardt, “An exponential family of probability distributions for directed graphs,” Journal of the American Statistical Association 76, 33–50 (1981).
  • Frank and Strauss (1986) O. Frank and D. Strauss, “Markov graphs,” Journal of the American Statistical Association 81, 832–842 (1986).
  • Strauss (1986) D. Strauss, “On a general class of models for interaction,” SIAM Review 28, 513–527 (1986).
  • Wasserman and Pattison (1996)

    S. Wasserman and P. Pattison, “Logit models and logistic regressions for social networks: I. an introduction to markov graphs and

    ,” Psychometrika 61, 401–425 (1996).
  • Anderson et al. (1999) C. J. Anderson, S. Wasserman,  and B. Crouch, “A p* primer: Logit models for social networks,” Social Networks 21, 37–66 (1999).
  • Snijders et al. (2006) T. A. B. Snijders, P. E. Pattison, G. L. Robins,  and M. S. Handcock, “New specifications for exponential random graph models,” Sociological Methodology 36, 99–153 (2006).
  • Robins et al. (2007) G. Robins, P. Pattison, Y. Kalish,  and D. Lusher, “An introduction to exponential random graph (p*) models for social networks,” Social Networks 29, 173–191 (2007).
  • Cranmer and Desmarais (2011) S. J. Cranmer and B. A. Desmarais, “Inferential network analysis with exponential random graph models,” Political Analysis 19, 66–86 (2011).
  • Snijders (2011) T. A. B. Snijders, “Statistical models for social networks,” Annual Review of Sociology 37, 131–153 (2011).
  • Park and Newman (2004) J. Park and M. E. J. Newman, “Statistical mechanics of networks,” Physical Review E 70, 066117 (2004).
  • Jaynes (1957) E. T. Jaynes, “Information theory and statistical mechanics,” Physical Review 106, 620–630 (1957).
  • Shore and Johnson (1980) J. Shore and R. Johnson, “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy,” IEEE Transactions on Information Theory 26, 26–37 (1980).
  • Pressé et al. (2013) S. Pressé, K. Ghosh, J. Lee,  and K. A. Dill, “Principles of maximum entropy and maximum caliber in statistical physics,” Reviews of Modern Physics 85, 1115–1141 (2013).
  • Squartini and Garlaschelli (2011) T. Squartini and D. Garlaschelli, “Analytical maximum-likelihood method to detect patterns in real networks,” New Journal of Physics 13, 083001 (2011).
  • Anand and Bianconi (2009) K. Anand and G. Bianconi, “Entropy measures for networks: Toward an information theory of complex topologies,” Physical Review E 80, 045102 (2009).
  • Squartini et al. (2015a) T. Squartini, J. de Mol, F. den Hollander,  and D. Garlaschelli, “Breaking of ensemble equivalence in networks,” Physical Review Letters 115, 268701 (2015a).
  • Jaynes (1982) E. T. Jaynes, “On the rationale of maximum-entropy methods,” Proceedings of the IEEE 70, 939–952 (1982).
  • Bianconi (2008) G. Bianconi, “The entropy of randomized network ensembles,” Europhysics Letters 81, 28005 (2008).
  • Squartini et al. (2015b) T. Squartini, R. Mastrandrea,  and D. Garlaschelli, “Unbiased sampling of network ensembles,” New Journal of Physics 17, 023052 (2015b).
  • Garlaschelli and Loffredo (2009) D. Garlaschelli and M. I. Loffredo, “Generalized bose-fermi statistics and structural correlations in weighted networks,” Physical Review Letters 102, 038701 (2009).
  • Garlaschelli and Loffredo (2008) D. Garlaschelli and M. I. Loffredo, “Maximum likelihood: Extracting unbiased information from complex networks,” Physical Review E 78, 015101(R) (2008).
  • Newman et al. (2001) M. E. J. Newman, S. H. Strogatz,  and D. J. Watts, “Random graphs with arbitrary degree distributions and their applications,” Physical Review E 64, 026118 (2001).
  • Itzkovitz et al. (2004) S. Itzkovitz, R. Milo, N. Kashtan, M. E. J. Newman,  and U. Alon, “Reply to “comment on ‘subgraphs in random networks’ ”,” Physical Review E 70, 058102 (2004).
  • Catanzaro et al. (2005) M. Catanzaro, M. Boguñá,  and R. Pastor-Satorras, “Generation of uncorrelated random scale-free networks,” Physical Review E 71, 027103 (2005).
  • Maslov et al. (2004) S. Maslov, K. Sneppen,  and A. Zaliznyak, “Detection of topological patterns in complex networks: Correlation profile of the internet,” Physica A: Statistical Mechanics and its Applications 333, 529–540 (2004).
  • Maslov and Sneppen (2002) S. Maslov and K. Sneppen, “Specificity and stability in topology of protein networks,” Science 296, 910–913 (2002).
  • Milo et al. (2002) R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,  and U. Alon, “Network motifs: Simple building blocks of complex networks,” Science 298, 824–827 (2002).
  • Zamora-López et al. (2008) G. Zamora-López, V. Zlatić, C. Zhou, H. Štefančić,  and J. Kurths, “Reciprocity of networks with degree correlations and arbitrary degree sequences,” Physical Review E 77, 016106 (2008).
  • Zlatić et al. (2009) V. Zlatić, G. Bianconi, A. Díaz-Guilera, D. Garlaschelli, F. Rao,  and G. Caldarelli, “On the rich-club effect in dense and weighted networks,” The European Physical Journal B 67, 271–275 (2009).
  • Tabourier et al. (2011) L. Tabourier, C. Roth,  and J.-P. Cointet, “Generating constrained random graphs using multiple edge switches,” Journal of Experimental Algorithmics 16, 1.1–1.15 (2011).
  • Artzy-Randrup and Stone (2005)

    Y. Artzy-Randrup and L. Stone, “Generating uniformly distributed random networks,” 

    Physical Review E 72, 056708 (2005).
  • Coolen et al. (2009) A. C. C. Coolen, A. De Martino,  and A. Annibale, “Constrained markovian dynamics of random graphs,” Journal of Statistical Physics 136, 1035–1067 (2009).
  • Roberts and Coolen (2012) E. S. Roberts and A. C. C. Coolen, “Unbiased degree-preserving randomization of directed binary networks,” Physical Review E 85, 046103 (2012).
  • Carstens and Horadam (2017) C. J. Carstens and K. J. Horadam, “Switching edges to randomize networks: what goes wrong and how to fix it,” Journal of Complex Networks 5, 337–351 (2017).
  • Del Genio et al. (2010) C. I. Del Genio, H. Kim, Z. Toroczkai,  and K. E. Bassler, “Efficient and exact sampling of simple graphs with given arbitrary degree sequence,” PLoS ONE 5, e10012 (2010).
  • Blitzstein and Diaconis (2011) J. Blitzstein and P. Diaconis, “A sequential importance sampling algorithm for generating random graphs with prescribed degrees,” Internet Mathematics 6, 489–522 (2011).
  • Kim et al. (2012) H. Kim, C. I. Del Genio, K. E. Bassler,  and Z. Toroczkai, “Constructing and sampling directed graphs with given degree sequences,” New Journal of Physics 14, 023012 (2012).
  • Newman (2009) M. E. J. Newman, “Random graphs with clustering,” Physical Review Letters 103, 058701 (2009).
  • Melnik et al. (2011) S. Melnik, A. Hackett, M. A. Porter, P. J. Mucha,  and J. P. Gleeson, “The unreasonable effectiveness of tree-based theory for networks with clustering,” Physical Review E 83, 036112 (2011).
  • Chung and Lu (2002b) F. Chung and L. Lu, “Connected components in random graphs with given expected degree sequences,” Annals of Combinatorics 6, 125–145 (2002b).
  • Park and Newman (2003) J. Park and M. E. J. Newman, “Origin of degree correlations in the internet and other networks,” Physical Review E 68, 026112 (2003).
  • Serrano and Boguñá (2005) M. Á. Serrano and M. Boguñá, “Weighted configuration model,” AIP Conference Proceedings 776, 101–107 (2005).
  • Burda and Krzywicki (2003) Z. Burda and A. Krzywicki, “Uncorrelated random networks,” Physical Review E 67, 046118 (2003).
  • Boguñá et al. (2004) M. Boguñá, R. Pastor-Satorras,  and A. Vespignani, “Cut-offs and finite size effects in scale-free networks,” The European Physical Journal B 38, 205–209 (2004).
  • Erdős and Rényi (1959) P. Erdős and A. Rényi, “On random graphs,” Publicationes Mathematicae Debrecen 6, 290–297 (1959).
  • Mastrandrea et al. (2014a) R. Mastrandrea, T. Squartini, G. Fagiolo,  and D. Garlaschelli, “Enhanced reconstruction of weighted networks from strengths and degrees,” New Journal of Physics 16, 043022 (2014a).
  • Neyman and Pearson (1933) J. Neyman and E. S. Pearson, “On the problem of the most efficient tests of statistical hypotheses,” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 231, 289–337 (1933).
  • Burnham and Anderson (2002) K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer-Verlag New York, 2002).
  • Akaike (1974) H. Akaike, “A new look at the statistical model identification,” IEEE Transactions on Automatic Control 19, 716–723 (1974).
  • Wagenmakers and Farrell (2004) E.-J. Wagenmakers and S. Farrell, “Aic model selection using akaike weights,” Psychonomic Bulletin & Review 11, 192–196 (2004).
  • Burnham and Anderson (2004) K. P. Burnham and D. R. Anderson, “Multimodel inference: Understanding aic and bic in model selection,” Sociological Methods & Research 33, 261–304 (2004).
  • Barrat et al. (2004b) A. Barrat, M. Barthelemy, R. Pastor-Satorras,  and A. Vespignani, “The architecture of complex weighted networks,” Proceedings of the National Academy of Sciences 101, 3747–3752 (2004b).
  • Colizza et al. (2006) V. Colizza, A. Flammini, M. A. Serrano,  and A. Vespignani, “Detecting rich-club ordering in complex networks,” Nature Physics 2, 110 (2006).
  • Serrano et al. (2006) M. Á. Serrano, M. Boguñá,  and R. Pastor-Satorras, “Correlations in weighted networks,” Physical Review E 74, 055101 (2006).
  • Guimerá et al. (2006) R. Guimerá, M. Sales-Pardo,  and L. A. N. Amaral, “Classes of complex networks defined by role-to-role connectivity profiles,” Nature Physics 3, 63 (2006).
  • Bhattacharya et al. (2008) K. Bhattacharya, G. Mukherjee, J. Saramäki, K. Kaski,  and S. S. Manna, “The international trade network: weighted network analysis and modelling,” Journal of Statistical Mechanics: Theory and Experiment 2008, P02002 (2008).
  • Opsahl et al. (2008) T. Opsahl, V. Colizza, P. Panzarasa,  and J. J. Ramasco, “Prominence and control: The weighted rich-club effect,” Physical Review Letters 101, 168702 (2008).
  • Serrano and Boguñá (2003) M. Á. Serrano and M. Boguñá, “Topology of the world trade web,” Physical Review E 68, 015101 (2003).
  • Garlaschelli and Loffredo (2004a) D. Garlaschelli and M. I. Loffredo, “Fitness-dependent topological properties of the world trade web,” Physical Review Letters 93, 188701 (2004a).
  • Garlaschelli and Loffredo (2005) D. Garlaschelli and M. I. Loffredo, “Structure and evolution of the world trade network,” Physica A: Statistical Mechanics and its Applications 355, 138–144 (2005).
  • Fagiolo et al. (2009) G. Fagiolo, J. Reyes,  and S. Schiavo, “World trade web: Topological properties, dynamics, and evolution,” Physical Review E 79, 036115 (2009).
  • Newman (2004) M. E. J. Newman, “Analysis of weighted networks,” Physical Review E 70, 056131 (2004).
  • Ahnert et al. (2007) S. E. Ahnert, D. Garlaschelli, T. M. A. Fink,  and G. Caldarelli, “Ensemble approach to the analysis of weighted networks,” Physical Review E 76, 016101 (2007).
  • Saramäki et al. (2007) J. Saramäki, M. Kivelä, J.-P. Onnela, K. Kaski,  and J. Kertész, “Generalizations of the clustering coefficient to weighted complex networks,” Physical Review E 75, 027105 (2007).
  • Shen-Orr et al. (2002) S. S. Shen-Orr, R. Milo, S. Mangan,  and U. Alon, “Network motifs in the transcriptional regulation network of escherichia coli,” Nature Genetics 31, 64 (2002).
  • Garlaschelli and Loffredo (2004b) D. Garlaschelli and M. I. Loffredo, “Patterns of link reciprocity in directed networks,” Physical Review Letters 93, 268701 (2004b).
  • Garlaschelli and Loffredo (2006) D. Garlaschelli and M. I. Loffredo, “Multispecies grand-canonical models for networks with reciprocity,” Physical Review E 73, 015101(R) (2006).
  • Squartini and Garlaschelli (2012) T. Squartini and D. Garlaschelli, “Triadic motifs and dyadic self-organization in the world trade network,” in Self-Organizing Systems, edited by F. A. Kuipers and P. E. Heegaard (Springer Berlin Heidelberg, 2012) pp. 24–35.
  • Stouffer et al. (2007) D. B. Stouffer, J. Camacho, W. Jiang,  and L. A. N. Amaral, “Evidence for the existence of a robust pattern of prey selection in food webs,” Proceedings of the Royal Society of London B: Biological Sciences 274, 1931–1940 (2007).
  • Squartini et al. (2013) T. Squartini, I. van Lelyveld,  and D. Garlaschelli, “Early-warning signals of topological collapse in interbank networks,” Scientific Reports 3, 3357 (2013).
  • Bargigli and Gallegati (2011) L. Bargigli and M. Gallegati, “Random digraphs with given expected degree sequences: A model for economic networks,” Journal of Economic Behavior & Organization 78, 396–411 (2011).
  • Guimerà et al. (2004) R. Guimerà, M. Sales-Pardo,  and L. A. N. Amaral, “Modularity from fluctuations in random graphs and complex networks,” Physical Review E 70, 025101 (2004).
  • Reichardt and Bornholdt (2007) J. Reichardt and S. Bornholdt, “Partitioning and modularity of graphs with arbitrary degree distribution,” Physical Review E 76, 015102 (2007).
  • Fronczak et al. (2013) P. Fronczak, A. Fronczak,  and M. Bujok, “Exponential random graph models for networks with community structure,” Physical Review E 88, 32810 (2013).
  • Lancichinetti et al. (2008) A. Lancichinetti, S. Fortunato,  and F. Radicchi, “Benchmark graphs for testing community detection algorithms,” Physical Review E 78, 046110 (2008).
  • Karrer and Newman (2011) B. Karrer and M. E. J. Newman, “Stochastic blockmodels and community structure in networks,” Physical Review E 83, 016107 (2011).
  • Peixoto (2012) T. P. Peixoto, “Entropy of stochastic blockmodel ensembles,” Physical Review E 85, 056122 (2012).
  • Saracco et al. (2017) F. Saracco, M. J. Straka, R. Di Clemente, A. Gabrielli, G. Caldarelli,  and T. Squartini, “Inferring monopartite projections of bipartite networks: An entropy-based approach,” New Journal of Physics 19, 053022 (2017).
  • Holme et al. (2003) P. Holme, F. Liljeros, C. R. Edling,  and B. J. Kim, “Network bipartivity,” Physical Review E 68, 056107 (2003).
  • Saracco et al. (2015) F. Saracco, R. Di Clemente, A. Gabrielli,  and T. Squartini, “Randomizing bipartite networks: The case of the world trade web,” Scientific Reports 5, 10595 (2015).
  • Tacchella et al. (2012) A. Tacchella, M. Cristelli, G. Caldarelli, A. Gabrielli,  and L. Pietronero, “A new metrics for countries’ fitness and products’ complexity,” Scientific Reports 2, 723 (2012).
  • Caldarelli et al. (2012) G. Caldarelli, M. Cristelli, A. Gabrielli, L. Pietronero, A. Scala,  and A. Tacchella, “A network analysis of countries’ export flows: Firm grounds for the building blocks of the economy,” PLoS ONE 7, e47278 (2012).
  • Saracco et al. (2016) F. Saracco, R. Di Clemente, A. Gabrielli,  and T. Squartini, “Detecting early signs of the 2007–2008 crisis in the world trade,” Scientific Reports 6, 30286 (2016).
  • Borrás et al. (2017) C. Payrató Borrás, L. Hernández,  and Y. Moreno, “Breaking the spell of nestedness,” (2017).
  • Zhou et al. (2007) T. Zhou, J. Ren, M. Medo,  and Y.-C. Zhang, “Bipartite network projection and personal recommendation,” Physical Review E 76, 046115 (2007).
  • Tumminello et al. (2005) M. Tumminello, T. Aste, T. Di Matteo,  and R. N. Mantegna, “A tool for filtering information in complex systems,” Proceedings of the National Academy of Sciences 102, 10421–10426 (2005).
  • Serrano et al. (2009) M. Á. Serrano, M. Boguñá,  and A. Vespignani, “Extracting the multiscale backbone of complex weighted networks,” PNAS 106, 6483–6488 (2009).
  • Slater (2009) P. B. Slater, “A two-stage algorithm for extracting the multiscale backbone of complex weighted networks,” Proceedings of the National Academy of Sciences 106, E66–E66 (2009).
  • Radicchi et al. (2011) F. Radicchi, J. J. Ramasco,  and S. Fortunato, “Information filtering in complex weighted networks,” Physical Review E 83, 046101 (2011).
  • Goldberg and Roth (2003) D. S. Goldberg and F. P. Roth, “Assessing experimentally derived interactions in a small world,” Proceedings of the National Academy of Sciences 100, 4372–4376 (2003).
  • Latapy et al. (2008) M. Latapy, C. Magnien,  and N. D. Vecchio, “Basic notions for the analysis of large two-mode networks,” Social Networks 30, 31–48 (2008).
  • Tumminello et al. (2011) M. Tumminello, S. Miccichè, F. Lillo, J. Piilo,  and R. N. Mantegna, “Statistically validated networks in bipartite complex systems,” PLoS ONE 6, e17994 (2011).
  • Tumminello et al. (2012) M. Tumminello, F. Lillo, J. Piilo,  and R. N. Mantegna, “Identification of clusters of investors from their real trading activity in a financial market,” New Journal of Physics 14, 013041 (2012).
  • Neal (2013) Z. Neal, “Identifying statistically significant edges in one-mode projections,” Social Network Analysis and Mining 3, 915–924 (2013).
  • Zweig and Kaufmann (2011) K. A. Zweig and M. Kaufmann, “A systematic approach to the one-mode projection of bipartite graphs,” Social Network Analysis and Mining 1, 187–218 (2011).
  • Horvát and Zweig (2013) E.-Á. Horvát and K. A. Zweig, “A fixed degree sequence model for the one-mode projection of multiplex bipartite graphs,” Social Network Analysis and Mining 3, 1209–1224 (2013).
  • Gionis et al. (2007) A. Gionis, H. Mannila, T. Mielikäinen,  and P. Tsaparas, “Assessing data mining results via swap randomization,” ACM Trans. Knowl. Discov. Data 1 (2007), 10.1145/1297332.1297338.
  • Neal (2014) Z. Neal, “The backbone of bipartite projections: Inferring relationships from co-authorship, co-sponsorship, co-attendance and other co-behaviors,” Social Networks 39, 84–97 (2014).
  • Gualdi et al. (2016) S. Gualdi, G. Cimini, K. Primicerio, R. Di Clemente,  and D. Challet, “Statistically validated network of portfolio overlaps and systemic risk,” Scientific Reports 6, 39467 (2016).
  • Straka et al. (2017) M. J. Straka, G. Caldarelli,  and F. Saracco, “Grand canonical validation of the bipartite international trade network,” Physical Review E 96, 022306 (2017).
  • Pugliese et al. (2017) E. Pugliese, G. Cimini, A. Patelli, A. Zaccaria, L. Pietronero,  and A. Gabrielli, “Unfolding the innovation system for the development of countries: co-evolution of science, technology and production,” (2017).
  • Pastor-Satorras et al. (2015) R. Pastor-Satorras, C. Castellano, P. Van Mieghem,  and A. Vespignani, “Epidemic processes in complex networks,” Reviews of Modern Physics 87, 925–979 (2015).
  • Wells (2004) S. J. Wells, Financial interlinkages in the United Kingdom’s interbank market and the risk of contagion, Working Paper 230 (Bank of England, 2004).
  • Upper (2011) C. Upper, “Simulation methods to assess the danger of contagion in interbank markets,” Journal of Financial Stability 7, 111–125 (2011).
  • Anand et al. (2017) K. Anand, I. van Lelyveld, Á. Banai, S. Friedrich, R. Garratt, G. Hałaj, J. Fique, I. Hansen, S. Martínez-Jaramillo, H. Lee, J. L. Molina-Borboa, S. Nobili, S. Rajan, D. Salakhova, T. C. Silva, L. Silvestri,  and S. R. Stancato de Souza, “The missing links: A global study on uncovering financial network structures from partial data,” Journal of Financial Stability , (in press) (2017).
  • Kossinets (2006) G. Kossinets, “Effects of missing data in social networks,” Social Networks 28, 247–268 (2006).
  • Lynch (2008) C. Lynch, “How do your data grow?” Nature 455, 28 (2008).
  • Amaral (2008) L. A. N. Amaral, “A truer measure of our ignorance,” Proceedings of the National Academy of Sciences 105, 6795–6796 (2008).
  • Guimerá and Sales-Pardo (2009) R. Guimerá and M. Sales-Pardo, “Missing and spurious interactions and the reconstruction of complex networks,” Proceedings of the National Academy of Sciences 106, 22073–22078 (2009).
  • Lu and Zhou (2011) L. Lu and T. Zhou, “Link prediction in complex networks: A survey,” Physica A: Statistical Mechanics and its Applications 390, 1150–1170 (2011).
  • Boguñá and Pastor-Satorras (2003) M. Boguñá and R. Pastor-Satorras, “Class of correlated random networks with hidden variables,” Physical Review E 68, 036112 (2003).
  • Garlaschelli et al. (2005) D. Garlaschelli, S. Battiston, M. Castri, V. D.P. Servedio,  and G. Caldarelli, “The scale-free topology of market investments,” Physica A: Statistical Mechanics and its Applications 350, 491–499 (2005).
  • De Masi et al. (2006) G. De Masi, G. Iori,  and G. Caldarelli, “Fitness model for the italian interbank money market,” Physical Review E 74, 066112 (2006).
  • Musmeci et al. (2013) N. Musmeci, S. Battiston, G. Caldarelli, M. Puliga,  and A. Gabrielli, “Bootstrapping topological properties and systemic risk of complex networks using the fitness model,” Journal of Statistical Physics 151, 1–15 (2013).
  • Cimini et al. (2015a) G. Cimini, T. Squartini, D. Garlaschelli,  and A. Gabrielli, “Systemic risk analysis on reconstructed economic and financial networks,” Scientific Reports 5, 15758 (2015a).
  • Cimini et al. (2015b) G. Cimini, T. Squartini, A. Gabrielli,  and D. Garlaschelli, “Estimating topological properties of weighted networks from limited information,” Physical Review E 92, 040802 (2015b).
  • Squartini et al. (2017a) T. Squartini, G. Cimini, A. Gabrielli,  and D. Garlaschelli, “Network reconstruction via density sampling,” Applied Network Science 2, 3 (2017a).
  • Squartini et al. (2017b) T. Squartini, A. Almog, G. Caldarelli, I. van Lelyveld, D. Garlaschelli,  and G. Cimini, “Enhanced capital-asset pricing model for the reconstruction of bipartite financial networks,” Physical Review E 96, 032315 (2017b).
  • Berg and Lässig (2002) J. Berg and M. Lässig, “Correlated random networks,” Physical Review Letters 89, 228701 (2002).
  • Park (2004) M. E. J. Park, J.and Newman, “Solution of the two-star model of a network,” Physical Review E 70, 066146 (2004).
  • Yin and Zhu (2016) Mei Yin and Lingjiong Zhu, “Reciprocity in directed networks,” Physica A: Statistical Mechanics and its Applications 447, 71–84 (2016).
  • Park and Newman (2005) J. Park and M. E. J. Newman, “Solution for the properties of a clustered network,” Physical Review E 72, 026136 (2005).
  • Fronczak et al. (2007) P. Fronczak, A. Fronczak,  and J. A. Hołyst, “Phase transitions in social networks,” The European Physical Journal B 59, 133–139 (2007).
  • Bianconi et al. (2008) G. Bianconi, A. C. C. Coolen,  and C. J. Perez Vicente, “Entropies of complex networks with hierarchically constrained topologies,” Physical Review E 78, 016114 (2008).
  • Bianconi (2009) G. Bianconi, “Entropy of network ensembles,” Physical Review E 79, 036114 (2009).
  • Mondragón (2014) R. J. Mondragón, “Network null-model based on maximal entropy and the rich-club,” Journal of Complex Networks 2, 288–298 (2014).
  • Annibale et al. (2009) A. Annibale, A. C. C. Coolen, L. P. Fernandes, F. Fraternali,  and J. Kleinjung, “Tailored graph ensembles as proxies or null models for real networks I: tools for quantifying structure,” Journal of Physics A: Mathematical and Theoretical 42, 485001 (2009).
  • Roberts et al. (2011) E. S. Roberts, T. Schlitt,  and A. C. C. Coolen, “Tailored graph ensembles as proxies or null models for real networks II: results on directed graphs,” Journal of Physics A: Mathematical and Theoretical 44, 275002 (2011).
  • Roberts and Coolen (2014) E. S. Roberts and A. C. C. Coolen, “Entropies of tailored random graph ensembles: bipartite graphs, generalized degrees, and node neighbourhoods,” Journal of Physics A: Mathematical and Theoretical 47, 435101 (2014).
  • Strauss and Ikeda (1990) D. Strauss and M. Ikeda, “Pseudolikelihood estimation for social networks,” Journal of the American Statistical Association 85, 204–212 (1990).
  • van Duijn et al. (2009) M. A. J. van Duijn, K. J. Gile,  and M. S. Handcock, “A framework for the comparison of maximum pseudo-likelihood and maximum likelihood estimation of exponential family random graph models,” Social Networks 31, 52–62 (2009).
  • Snijders et al. (2010) T. A. B. Snijders, J. Koskinen,  and M. Schweinberger, “Maximum likelihood estimation for social network dynamics,” The Annals of Applied Statistics 4, 567–588 (2010).
  • Schweinberger (2011) M. Schweinberger, “Instability, sensitivity, and degeneracy of discrete exponential families,” Journal of the American Statistical Association 106, 1361–1370 (2011).
  • Desmarais and Cranmer (2012) B. A. Desmarais and S. J. Cranmer, “Statistical mechanics of networks: Estimation and uncertainty,” Physica A: Statistical Mechanics and its Applications 391, 1865–1876 (2012).
  • Chatterjee and Diaconis (2013) S. Chatterjee and P. Diaconis, “Estimating and understanding exponential random graph models,”  41, 2428–2461 (2013).
  • Horvát et al. (2015) S. Horvát, É. Czabarka,  and Z. Toroczkai, “Reducing degeneracy in maximum entropy models of networks,” Physical Review Letters 114, 158701 (2015).
  • Mahadevan et al. (2006) P. Mahadevan, D. Krioukov, K. Fall,  and A. Vahdat, “Systematic topology analysis and generation using degree correlations,” SIGCOMM Comput. Commun. Rev. 36, 135–146 (2006).
  • Orsini et al. (2015) C. Orsini, M. M. Dankulov, P. Colomer-de Simón, A. Jamakovic, P. Mahadevan, A. Vahdat, K. E. Bassler, Z. Toroczkai, M. Boguñá, G. Caldarelli, S. Fortunato,  and D. Krioukov, “Quantifying randomness in real networks,” Nature Communications 6, 8627 (2015).
  • Foster et al. (2010) D. Foster, J. Foster, M. Paczuski,  and P. Grassberger, “Communities, clustering phase transitions, and hysteresis: Pitfalls in constructing network ensembles,” Physical Review E 81, 046115 (2010).
  • Fischer et al. (2015) R. Fischer, J. C. Leitão, T. P. Peixoto,  and E. G. Altmann, “Sampling motif-constrained ensembles of networks,” Physical Review Letters 115, 188701 (2015).
  • Kivelä et al. (2014) M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno,  and M. A. Porter, “Multilayer networks,” Journal of Complex Networks 2, 203–271 (2014).
  • Boccaletti et al. (2014) S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang,  and M. Zanin, “The structure and dynamics of multilayer networks,” Physics Reports 544, 1–122 (2014).
  • De Domenico et al. (2016) M. De Domenico, C. Granell, M. A. Porter,  and A. Arenas, “The physics of spreading processes in multilayer networks,” Nature Physics 12, 901–906 (2016).
  • Bianconi (2013) G. Bianconi, “Statistical mechanics of multiplex networks: Entropy and overlap,” Physical Review E 87, 062806 (2013).
  • Menichetti et al. (2014) G. Menichetti, D. Remondini,  and G. Bianconi, “Correlations between weights and overlap in ensembles of weighted multiplex networks,” Physical Review E 90, 062817 (2014).
  • Sagarra et al. (2013) O. Sagarra, C. J. Pérez Vicente,  and A. Díaz-Guilera, “Statistical mechanics of multiedge networks,” Physical Review E 88, 062806 (2013).
  • Sagarra et al. (2014) O. Sagarra, F. Font-Clos, C. J. Pérez-Vicente,  and A. Díaz-Guilera, “The configuration multi-edge model: Assessing the effect of fixing node strengths on weighted network magnitudes,” Europhysics Letters 107, 38002 (2014).
  • Sagarra et al. (2015) O. Sagarra, C. J. Pérez Vicente,  and A. Díaz-Guilera, “Role of adjacency-matrix degeneracy in maximum-entropy-weighted network models,” Physical Review E 92, 052816 (2015).
  • Mastrandrea et al. (2014b) R. Mastrandrea, T. Squartini, G. Fagiolo,  and D. Garlaschelli, “Reconstructing the world trade multiplex: The role of intensive and extensive biases,” Physical Review E 90, 062804 (2014b).
  • Zuev et al. (2015) K. Zuev, O. Eisenberg,  and D. Krioukov, “Exponential random simplicial complexes,” Journal of Physics A: Mathematical and Theoretical 48, 465002 (2015).
  • Courtney and Bianconi (2016) O. T. Courtney and G. Bianconi, “Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes,” Physical Review E 93, 062311 (2016).
  • Young et al. (2017) J.-G. Young, G. Petri, F. Vaccarino,  and A. Patania, “Construction of and efficient sampling from the simplicial configuration model,” Physical Review E 96, 032312 (2017).
  • Braunstein et al. (2006) S. L. Braunstein, S. Ghosh,  and S. Severini, “The laplacian of a graph as a density matrix: a basic combinatorial approach to separability of mixed states,” Annals of Combinatorics 10, 291–317 (2006).
  • Anand et al. (2011) K. Anand, G. Bianconi,  and S. Severini, “Shannon and von neumann entropy of random networks with heterogeneous expected degree,” Physical Review E 83, 036109 (2011).
  • Anand et al. (2014) K. Anand, D. Krioukov,  and G. Bianconi, “Entropy distribution and condensation in random networks with a given degree distribution,” Physical Review E 89, 062807 (2014).
  • De Domenico and Biamonte (2016) M. De Domenico and J. Biamonte, “Spectral entropies as information-theoretic tools for complex network comparison,” Physical Review X 6, 041062 (2016).
  • Delvenne et al. (2015) J.-C. Delvenne, R. Lambiotte,  and L. E. C. Rocha, “Diffusion on networked systems is a question of time or structure,” Nature Communications 6, 7366 (2015).
  • Masuda et al. (2017) N. Masuda, M. A. Porter,  and R. Lambiotte, “Random walks and diffusion on networks,” Physics Reports 716-717, 1–58 (2017).