The Shannon Entropy of a Histogram

10/06/2022
by   Stephen Watts, et al.
0

The histogram is a key method for visualizing data and estimating the underlying probability distribution. Incorrect conclusions about the data result from over or under-binning. A new method based on the Shannon entropy of the histogram uses a simple formula based on the differential entropy estimated from nearest-neighbour distances. Links are made between the new method and other algorithms such as Scott's formula, and cost and risk function methods. A parameter is found that predicts over and under-binning, which can be estimated for any histogram. The new algorithm is shown to be robust by application to real data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro