The Scattering Compositional Learner: Discovering Objects, Attributes, Relationships in Analogical Reasoning

07/08/2020 ∙ by Yuhuai Wu, et al. ∙ 1

In this work, we focus on an analogical reasoning task that contains rich compositional structures, Raven's Progressive Matrices (RPM). To discover compositional structures of the data, we propose the Scattering Compositional Learner (SCL), an architecture that composes neural networks in a sequence. Our SCL achieves state-of-the-art performance on two RPM datasets, with a 48.7 relative improvement on Balanced-RAVEN and 26.4 state-of-the-art. We additionally show that our model discovers compositional representations of objects' attributes (e.g., shape color, size), and their relationships (e.g., progression, union). We also find that the compositional representation makes the SCL significantly more robust to test-time domain shifts and greatly improves zero-shot generalization to previously unseen analogies.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.