The relationship between driving volatility in time to collision and crash injury severity in a naturalistic driving environment
As a key indicator of unsafe driving, driving volatility characterizes the variations in microscopic driving decisions. This study characterizes volatility in longitudinal and lateral driving decisions and examines the links between driving volatility in time to collision and crash injury severity. By using a unique real-world naturalistic driving database from the 2nd Strategic Highway Research Program (SHRP), a test set of 671 crash events featuring around 0.2 million temporal samples of real world driving are analyzed. Based on different driving performance measures, 16 different volatility indices are created. To explore the relationships between crash-injury severity outcomes and driving volatility, the volatility indices are then linked with individual crash events including information on crash severity, drivers' pre crash maneuvers and behaviors, secondary tasks and durations, and other factors. As driving volatility prior to crash involvement can have different components, an indepth analysis is conducted using the aggregate as well as segmented (based on time to collision) real world driving data. To account for the issues of observed and unobserved heterogeneity, fixed and random parameter logit models with heterogeneity in parameter means and variances are estimated. The empirical results offer important insights regarding how driving volatility in time to collision relates to crash severity outcomes. Overall, statistically significant positive correlations are found between the aggregate (as well as segmented) volatility measures and crash severity outcomes. The findings suggest that greater driving volatility (both in longitudinal and lateral direction) in time to collision increases the likelihood of police reportable or most severe crash events... ...
READ FULL TEXT