The Pump Scheduling Problem: A Real-World Scenario for Reinforcement Learning
Deep Reinforcement Learning (DRL) has achieved remarkable success in scenarios such as games and has emerged as a potential solution for control tasks. That is due to its ability to leverage scalability and handle complex dynamics. However, few works have targeted environments grounded in real-world settings. Indeed, real-world scenarios can be challenging, especially when faced with the high dimensionality of the state space and unknown reward function. We release a testbed consisting of an environment simulator and demonstrations of human operation concerning pump scheduling of a real-world water distribution facility to facilitate research. The pump scheduling problem can be viewed as a decision process to decide when to operate pumps to supply water while limiting electricity consumption and meeting system constraints. To provide a starting point, we release a well-documented codebase, present an overview of some challenges that can be addressed and provide a baseline representation of the problem. The code and dataset are available at https://gitlab.com/hdonancio/pumpscheduling.
READ FULL TEXT