The Probabilistic Model Checker Storm (Extended Abstract)

10/27/2016
by   Christian Dehnert, et al.
0

We present a new probabilistic model checker Storm. Using state-of-the-art libraries, we aim for both high performance and versatility. This extended abstract gives a brief overview of the features of Storm.

READ FULL TEXT VIEW PDF
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

05/19/2012

Efficient Methods for Unsupervised Learning of Probabilistic Models

In this thesis I develop a variety of techniques to train, evaluate, and...
03/06/2018

A PTAS for vertex guarding weakly-visible polygons - An extended abstract

In this extended abstract, we first present a PTAS for guarding the vert...
09/06/2021

Image In painting Applied to Art Completing Escher's Print Gallery

This extended abstract presents the first stages of a research on in-pai...
10/07/2017

Interactive Learning of State Representation through Natural Language Instruction and Explanation

One significant simplification in most previous work on robot learning i...
06/07/2017

A Mention-Ranking Model for Abstract Anaphora Resolution

Resolving abstract anaphora is an important, but difficult task for text...
11/18/2016

Stratified Knowledge Bases as Interpretable Probabilistic Models (Extended Abstract)

In this paper, we advocate the use of stratified logical theories for re...
07/21/2021

How Lightning's Routing Diminishes its Anonymity

The system shows the error of "Bad character(s) in field Abstract" for n...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.

References

  • [1] Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. Proc. of SFM. Vol. 4486 of LNCS, Springer (2007) 220–270
  • [2] Kwiatkowska, M.: Model checking for probability and time: from theory to practice. LICS, IEEE CS (2003) 351
  • [3] Baier, C.: Probabilistic model checking. Dependable Software Systems Engineering. Vol. 45 of NATO Science for Peace and Security Series - D: Information and Communication Security. IOS Press (2016) 1–23
  • [4] Katoen, J.P.: The probabilistic model checking landscape. Proc. of LICS, ACM (2016) 31–46
  • [5] Dehnert, C., Jansen, N., Wimmer, R., Ábrahám, E., Katoen, J.P.: Fast debugging of PRISM models. Proc. of ATVA. Vol. 8837 of LNCS, Springer (2014) 146–162
  • [6] Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.P.:

    Safety-constrained reinforcement learning for MDPs.

    Proc. of TACAS. (2016)
  • [7] Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen, J.P., Ábrahám, E.: Prophesy: A probabilistic parameter synthesis tool. Proc. of CAV. Vol. 9206 of LNCS, Springer (2015) 214–231
  • [8] Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.P.: Parameter synthesis for Markov models: Faster than ever. Proc. of ATVA. Vol. 9938 of LNCS (2016) 50–67
  • [9] Volk, M., Junges, S., Katoen, J.P.: Advancing dynamic fault tree analysis - get succinct state spaces fast and synthesise failure rates. Proc. of SAFECOMP. Vol. 9922 of LNCS, Springer (2016) 253–265
  • [10] Jansen, N., Dehnert, C., Kaminski, B.L., Katoen, J.P., Westhofen, L.: Bounded model checking for probabilistic programs. Proc. of ATVA. Vol. 9938 of LNCS (2016) 68–85
  • [11] Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Performance Evaluation 68(2) (2011) 90–104
  • [12] PRISM Website: (2015) http://prismmodelchecker.org.
  • [13] Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. Proc. of QEST, IEEE CS (2012) 203–204
  • [14] Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.: Jani: Quantitative model and tool interaction. (in preparation)
  • [15] Eisentraut, C., Hermanns, H., Katoen, J.P., Zhang, L.: A semantics for every GSPN. Proc. of Petri Nets. Vol. 7927 of LNCS, Springer (2013) 90–109
  • [16] Stamatelatos, M., Vesely, W., Dugan, J.B., Fragola, J., Minarick, J., Railsback, J.: Fault Tree Handbook with Aerospace Applications. NASA Headquarters (2002)
  • [17] McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems. Monographs in Computer Science. Springer (2005)
  • [18] Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5) (1994) 512–535
  • [19] Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time Markov chains. Proc. of CAV. Vol. 1102 of LNCS, Springer (1996) 269–276
  • [20] Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabilities in Markovian models efficiently. Proc. of TACAS. Vol. 8413 of LNCS, Springer (2014) 515–530
  • [21] Brázdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretínský, J., Kwiatkowska, M., Parker, D., Ujma, M.: Verification of Markov decision processes using learning algorithms. Proc. of ATVA. Vol. 8837 of LNCS, Springer (2014) 98–114
  • [22] Guennebaud, G., Jacob, B., et al.: Eigen v3. (http://eigen.tuxfamily.org)
  • [23] gmm++ Website: (2015) http://download.gna.org/getfem/html/homepage/gmm/index.html.
  • [24] CUDD Website: (2015) http://vlsi.colorado.edu/~fabio/CUDD/html/index.html.
  • [25] van Dijk, T., van de Pol, J.: Sylvan: Multi-core decision diagrams. Proc. of TACAS. Vol. 9035 of LNCS, Springer (2015) 677–691
  • [26] Gurobi Optimization, Inc.: Gurobi optimizer reference manual. http://www.gurobi.com (2015)
  • [27] GNU project: Linear programming kit, version 4.6. http://www.gnu.org/software/glpk/glpk.html (2016)
  • [28] de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. Proc. of TACAS. Vol. 4963 of LNCS, Springer (2008) 337–340
  • [29] Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 SMT solver. Proc. of TACAS. Vol. 7795 of Lecture Notes in Computer Science, Springer (2013) 93–107
  • [30] Barrett, C., Stump, A., Tinelli, C., Boehme, S., Cok, D., Deharbe, D., Dutertre, B., Fontaine, P., Ganesh, V., Griggio, A., Grundy, J., Jackson, P., Oliveras, A., Krstić, S., Moskal, M., Moura, L.D., Sebastiani, R., Cok, T.D., Hoenicke, J.: C.: The smt-lib standard: Version 2.0. Technical report (2010)
  • [31] Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J.P., Becker, B.: High-level counterexamples for probabilistic automata. Logical Methods in Computer Science 11(1) (2015)
  • [32] Dräger, K., Forejt, V., Kwiatkowska, M., Parker, D., Ujma, M.: Permissive controller synthesis for probabilistic systems. Logical Methods in Computer Science 11(2) (2015)
  • [33] CArL Website: (2015) http://goo.gl/8QsVxv.
  • [34] Calinescu, R., Johnson, K., Paterson, C.:

    FACT: A probabilistic model checker for formal verification with confidence intervals.

    Proc. of TACAS. Vol. 9636 of LNCS, Springer (2016) 540–546
  • [35] Budde, C.E., D’Argenio, P.R., Monti, R.E.: Compositional construction of importance functions in fully automated importance splitting. Proc. of VALUETOOLS, ICST (2016)
  • [36] Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and analysis of Markov reward automata. Proc. of ATVA. Vol. 8837 of LNCS, Springer (2014) 168–184
  • [37] Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: A web-based probabilistic model checker. Proc. of FM. Vol. 8442 of LNCS, Springer (2014) 312–317
  • [38] Hartmanns, A., Hermanns, H.: The modest toolset: An integrated environment for quantitative modelling and verification. Proc. of TACAS. Vol. 8413 of LNCS, Springer (2014) 593–598
  • [39] Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: A model checker for parametric Markov models. Proc. of CAV. Vol. 6174 of LNCS, Springer (2010) 660–664
  • [40] Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PASS: abstraction refinement for infinite probabilistic models. Proc. of TACAS. Vol. 6015 of LNCS, Springer (2010) 353–357
  • [41] Liu, Y., Sun, J., Dong, J.S.: PAT 3: An extensible architecture for building multi-domain model checkers. Proc. of ISSRE, IEEE CS (2011) 190–199
  • [42] Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic real-time systems. Proc. of CAV. Vol. 6806 of LNCS, Springer (2011) 585–591
  • [43] Bulychev, P.E., David, A., Larsen, K.G., Mikucionis, M., Poulsen, D.B., Legay, A., Wang, Z.: UPPAAL-SMC: statistical model checking for priced timed automata. Proc. of QAPL. Vol. 85 of EPTCS (2012) 1–16
  • [44] Jansen, N., Ábrahám, E., Volk, M., Wimmer, R., Katoen, J.P., Becker, B.: The COMICS tool – Computing minimal counterexamples for DTMCs. Proc. of ATVA. Vol. 7561 of LNCS, Springer (2012) 349–353 (to appear).
  • [45] Arnold, F., Belinfante, A., van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc: A tool for efficient fault tree analysis. Proc. of SAFECOMP. Vol. 8153 of LNCS, Springer (2013) 293–301
  • [46] Amparore, E.G., Beccuti, M., Donatelli, S.: (stochastic) model checking in GreatSPN. Proc. of Petri Nets. Vol. 8489 of LNCS, Springer (2014) 354–363