The Predictive Normalized Maximum Likelihood for Over-parameterized Linear Regression with Norm Constraint: Regret and Double Descent

02/14/2021
by   Koby Bibas, et al.
0

A fundamental tenet of learning theory is that a trade-off exists between the complexity of a prediction rule and its ability to generalize. The double-decent phenomenon shows that modern machine learning models do not obey this paradigm: beyond the interpolation limit, the test error declines as model complexity increases. We investigate over-parameterization in linear regression using the recently proposed predictive normalized maximum likelihood (pNML) learner which is the min-max regret solution for individual data. We derive an upper bound of its regret and show that if the test sample lies mostly in a subspace spanned by the eigenvectors associated with the large eigenvalues of the empirical correlation matrix of the training data, the model generalizes despite its over-parameterized nature. We demonstrate the use of the pNML regret as a point-wise learnability measure on synthetic data and that it can successfully predict the double-decent phenomenon using the UCI dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset