DeepAI AI Chat
Log In Sign Up

The Parable of the Fruit Sellers Or, A Game of Random Variables

12/23/2017
by   Artem Hulko, et al.
The University of Texas at Austin
0

This paper analyzes a simple game with n players. Fix a mean in interval [0, 1] and let each player choose any random variable distributed on that interval with the given mean. The winner of the zero-sum game is the player whose random variable has the highest realization. We show that the position of the mean within the interval is crucial. Remarkably, if the given mean is above a crucial threshold then the equilibrium must contain a point mass on 1. The cutoff is strictly decreasing in the number of players, n; and for fixed μ, as the number of players is increased, each player places more weight on 1 at equilibrium. We also characterize the unique symmetric equilibrium of the game when the mean is sufficiently low.

READ FULL TEXT

page 1

page 2

page 3

page 4

12/23/2017

A Game of Random Variables

This paper analyzes a simple game with n players. We fix a mean, μ, in t...
11/28/2018

A Game of Martingales

We consider a two player dynamic game played over T ≤∞ periods. In each ...
09/08/2019

Characterizing the interplay between information and strength in Blotto games

In this paper, we investigate informational asymmetries in the Colonel B...
02/14/2017

Agent Failures in All-Pay Auctions

All-pay auctions, a common mechanism for various human and agent interac...
02/12/2020

Computing Shapley Values for Mean Width in 3-D

The Shapley value is a common tool in game theory to evaluate the import...
02/26/2018

Information Provision in a Sequential Search Setting

Consider a variation on the classic Weitzman search problem, in which fi...
07/07/2022

Playing Divide-and-Choose Given Uncertain Preferences

We study the classic divide-and-choose method for equitably allocating d...