The nonconforming Crouzeix-Raviart element approximation and two-grid discretizations for the elastic eigenvalue problem

12/18/2021
by   Hai Bi, et al.
0

In this paper, we extend the work of Brenner and Sung [Math. Comp. 59, 321–338 (1992)] and present a regularity estimate for the elastic equations in concave domains. Based on the regularity estimate we prove that the constants in the error estimates of the nonconforming Crouzeix-Raviart element approximations for the elastic equations/eigenvalue problem are independent of the Lame constant, which means the nonconforming Crouzeix-Raviart element approximations are locking-free. We also establish two kinds of two-grid discretization schemes for the elastic eigenvalue problem and analyze that when the mesh sizes of the coarse grid and fine grid satisfy some relationship, the resulting solutions can achieve optimal accuracy. Numerical examples are provided to show the efficiency of two-grid schemes for the elastic eigenvalue problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro