The Maximin Share Dominance Relation

12/18/2019
by   Erel Segal-Halevi, et al.
0

Given a finite set X and an ordering ≽ over its subsets, the l-out-of-d maximin-share of X is the maximal (by ≽) subset of X that can be constructed by partitioning X into d parts and picking the worst union of l parts. A pair of integers (l,d) dominates a pair (l',d') if, for any set X and ordering ≽, the l-out-of-d maximin-share of X is at least as good (by ≽) as the l'-out-of-d' maximin-share of X. This note presents a necessary and sufficient condition for deciding whether a given pair of integers dominates another pair, and an algorithm for finding all non-dominated pairs. It compares the l-out-of-d maximin-share to some other criteria for fair allocation of indivisible objects among people with different entitlements.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset