The Manufacturing Data and Machine Learning Platform: Enabling Real-time Monitoring and Control of Scientific Experiments via IoT

05/27/2020
by   Jakob R. Elias, et al.
0

IoT devices and sensor networks present new opportunities for measuring, monitoring, and guiding scientific experiments. Sensors, cameras, and instruments can be combined to provide previously unachievable insights into the state of ongoing experiments. However, IoT devices can vary greatly in the type, volume, and velocity of data they generate, making it challenging to fully realize this potential. Indeed, synergizing diverse IoT data streams in near-real time can require the use of machine learning (ML). In addition, new tools and technologies are required to facilitate the collection, aggregation, and manipulation of sensor data in order to simplify the application of ML models and in turn, fully realize the utility of IoT devices in laboratories. Here we will demonstrate how the use of the Argonne-developed Manufacturing Data and Machine Learning (MDML) platform can analyze and use IoT devices in a manufacturing experiment. MDML is designed to standardize the research and operational environment for advanced data analytics and AI-enabled automated process optimization by providing the infrastructure to integrate AI in cyber-physical systems for in situ analysis. We will show that MDML is capable of processing diverse IoT data streams, using multiple computing resources, and integrating ML models to guide an experiment.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset