The Macroeconomy as a Random Forest
Over the last decades, an impressive amount of non-linearities have been proposed to reconcile reduced-form macroeconomic models with the data. Many of them boil down to have linear regression coefficients evolving through time: threshold/switching/smooth-transition regression; structural breaks and random walk time-varying parameters. While all of these schemes are reasonably plausible in isolation, I argue that those are much more in agreement with the data if they are combined. To this end, I propose Macroeconomic Random Forests, which adapts the canonical Machine Learning (ML) algorithm to the problem of flexibly modeling evolving parameters in a linear macro equation. The approach exhibits clear forecasting gains over a wide range of alternatives and successfully predicts the drastic 2008 rise in unemployment. The obtained generalized time-varying parameters (GTVPs) are shown to behave differently compared to random walk coefficients by adapting nicely to the problem at hand, whether it is regime-switching behavior or long-run structural change. By dividing the typical ML interpretation burden into looking at each TVP separately, I find that the resulting forecasts are, in fact, quite interpretable. An application to the US Phillips curve reveals it is probably not flattening the way you think.
READ FULL TEXT