The low-rank hurdle model

09/06/2017
by   Christopher Dienes, et al.
0

A composite loss framework is proposed for low-rank modeling of data consisting of interesting and common values, such as excess zeros or missing values. The methodology is motivated by the generalized low-rank framework and the hurdle method which is commonly used to analyze zero-inflated counts. The model is demonstrated on a manufacturing data set and applied to the problem of missing value imputation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro