The Longest (s, t)-paths of O-shaped Supergrid Graphs

11/16/2019
by   Ruo-Wei Hung, et al.
0

In this paper, we continue the study of the Hamiltonian and longest (s, t)-paths of supergrid graphs. The Hamiltonian (s, t)-path of a graph is a Hamiltonian path between any two given vertices s and t in the graph, and the longest (s, t)-path is a simple path with the maximum number of vertices from s to t in the graph. A graph holds Hamiltonian connected property if it contains a Hamiltonian (s, t)-path. These two problems are well-known NP-complete for general supergrid graphs. An O-shaped supergrid graph is a special kind of a rectangular grid graph with a rectangular hole. In this paper, we first prove the Hamiltonian connectivity of O-shaped supergrid graphs except few conditions. We then show that the longest (s, t)-path of an O-shaped supergrid graph can be computed in linear time. The Hamiltonian and longest (s, t)-paths of O-shaped supergrid graphs can be applied to compute the minimum trace of computerized embroidery machine and 3D printer when a hollow object is printed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro