The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization

07/11/2018
by   Constantinos Daskalakis, et al.
0

Motivated by applications in Optimization, Game Theory, and the training of Generative Adversarial Networks, the convergence properties of first order methods in min-max problems have received extensive study. It has been recognized that they may cycle, and there is no good understanding of their limit points when they do not. When they converge, do they converge to local min-max solutions? We characterize the limit points of two basic first order methods, namely Gradient Descent/Ascent (GDA) and Optimistic Gradient Descent Ascent (OGDA). We show that both dynamics avoid unstable critical points for almost all initializations. Moreover, for small step sizes and under mild assumptions, the set of {OGDA}-stable critical points is a superset of {GDA}-stable critical points, which is a superset of local min-max solutions (strict in some cases). The connecting thread is that the behavior of these dynamics can be studied from a dynamical systems perspective.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset