The Importance of Constraint Smoothness for Parameter Estimation in Computational Cognitive Modeling
Psychiatric neuroscience is increasingly aware of the need to define psychopathology in terms of abnormal neural computation. The central tool in this endeavour is the fitting of computational models to behavioural data. The most prominent example of this procedure is fitting reinforcement learning (RL) models to decision-making data collected from mentally ill and healthy subject populations. These models are generative models of the decision-making data themselves, and the parameters we seek to infer can be psychologically and neurobiologically meaningful. Currently, the gold standard approach to this inference procedure involves Monte-Carlo sampling, which is robust but computationally intensive---rendering additional procedures, such as cross-validation, impractical. Searching for point estimates of model parameters using optimization procedures remains a popular and interesting option. On a novel testbed simulating parameter estimation from a common RL task, we investigated the effects of smooth vs. boundary constraints on parameter estimation using interior point and deterministic direct search algorithms for optimization. Ultimately, we show that the use of boundary constraints can lead to substantial truncation effects. Our results discourage the use of boundary constraints for these applications.
READ FULL TEXT