The Implicit Bias of Benign Overfitting

01/27/2022
by   Ohad Shamir, et al.
0

The phenomenon of benign overfitting, where a predictor perfectly fits noisy training data while attaining low expected loss, has received much attention in recent years, but still remains not fully understood beyond simple linear regression setups. In this paper, we show that for regression, benign overfitting is "biased" towards certain types of problems, in the sense that its existence on one learning problem excludes its existence on other learning problems. On the negative side, we use this to argue that one should not expect benign overfitting to occur in general, for several natural extensions of the plain linear regression problems studied so far. We then turn to classification problems, and show that the situation there is much more favorable. Specifically, we consider a model where an arbitrary input distribution of some fixed dimension k is concatenated with a high-dimensional distribution, and prove that the max-margin predictor (to which gradient-based methods are known to converge in direction) is asymptotically biased towards minimizing the expected *squared hinge loss* w.r.t. the k-dimensional distribution. This allows us to reduce the question of benign overfitting in classification to the simpler question of whether this loss is a good surrogate for the prediction error, and use it to show benign overfitting in some new settings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset