The Implicit Bias of AdaGrad on Separable Data

06/09/2019
by   Qian Qian, et al.
0

We study the implicit bias of AdaGrad on separable linear classification problems. We show that AdaGrad converges to a direction that can be characterized as the solution of a quadratic optimization problem with the same feasible set as the hard SVM problem. We also give a discussion about how different choices of the hyperparameters of AdaGrad might impact this direction. This provides a deeper understanding of why adaptive methods do not seem to have the generalization ability as good as gradient descent does in practice.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro