The Hybrid Discontinuous Galerkin method for elliptic problems and applications in vertical ocean-slice modeling
Element Method. The Finite Volume Method guarantees local and global mass conservation. A property not satisfied by the Finite Volume Method. On the down side, the Finite Volume Method requires non trivial modifications to attain high order approximations unlike the Finite Volume Method. It has been contended that the Discontinuous Galerkin Method, locally conservative and high order, is a natural progression for Coastal Ocean Modeling. Consequently, as a primer we consider the vertical ocean-slice model with the inclusion of density effects. To solve these non steady Partial Differential Equations, we develop a pressure projection method for solution. We propose a Hybridized Discontinuous Galerkin solution for the required Poisson Problem in each time step. The purpose, is to reduce the computational cost of classical applications of the Discontinuous Galerkin method. The Hybridized Discontinuous Galerkin method is first presented as a general elliptic problem solver. It is shown that a high order implementation yields fast and accurate approximations on coarse meshes.
READ FULL TEXT