The gradient flow structures of thermo-poro-visco-elastic processes in porous media

by   Jakub Wiktor Both, et al.

In this paper, the inherent gradient flow structures of thermo-poro-visco-elastic processes in porous media are examined for the first time. In the first part, a modelling framework is introduced aiming for describing such processes as generalized gradient flows requiring choices of physical states, corresponding energies, dissipation potentials and external work rates. It is demonstrated that various existing models can be in fact written within this framework. Ultimately, the particular structure allows for a unified well-posedness analysis performed for different classes of linear and non-linear models. In the second part, the gradient flow structures are utilized for constructing efficient discrete approximation schemes for thermo-poro-visco-elasticity – in particular robust, physical splitting schemes. Applying alternating minimization to naturally arising minimization formulations of (semi-)discrete models is proposed. For such, the energy decrease per iteration is quantified by applying abstract convergence theory only utilizing convexity and Lipschitz continuity properties of the problem – a fairly simple but flexible machinery. By this approach, e.g., the widely used undrained and fixed-stress splits for the linear Biot equations are derived and analyzed. By application of the framework to more advanced models, novel splitting schemes with guaranteed theoretical convergence rates are naturally derived. Moreover, based on the minimization character of the (semi-)discrete equations, relaxation of splitting schemes by line search is proposed; numerical results show a potentially great impact on the acceleration of splitting schemes for both linear and nonlinear problems.


page 1

page 2

page 3

page 4


A robust solution strategy for the Cahn-Larché equations

In this paper we propose a solution strategy for the Cahn-Larché equatio...

A Dissipation Theory for Potentials-Based FDTD for Lossless Inhomogeneous Media

A dissipation theory is proposed for the potentials-based FDTD algorithm...

High order, semi-implicit, energy stable schemes for gradient flows

We introduce a class of high order accurate, semi-implicit Runge-Kutta s...

Iterative splitting schemes for a soft material poromechanics model

We address numerical solvers for a poromechanics model particularly adap...

An efficient method for computing stationary states of phase field crystal models

Computing stationary states is an important topic for phase field crysta...

Please sign up or login with your details

Forgot password? Click here to reset