The geometry of Gaussian double Markovian distributions

06/30/2021 ∙ by Tobias Boege, et al. ∙ 0

Gaussian double Markovian models consist of covariance matrices constrained by a pair of graphs specifying zeros simultaneously in the covariance matrix and its inverse. We study the semi-algebraic geometry of these models, in particular their dimension, smoothness and connectedness. Results on their vanishing ideals and conditional independence ideals are also included, and we put them into the general framework of conditional independence models. We end with several open questions and conjectures.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.