The Gap Between Model-Based and Model-Free Methods on the Linear Quadratic Regulator: An Asymptotic Viewpoint
The effectiveness of model-based versus model-free methods is a long-standing question in reinforcement learning (RL). Motivated by recent empirical success of RL on continuous control tasks, we study the sample complexity of popular model-based and model-free algorithms on the Linear Quadratic Regulator (LQR). We show that for policy evaluation, a simple model-based plugin method requires asymptotically less samples than the classical least-squares temporal difference (LSTD) estimator to reach the same quality of solution; the sample complexity gap between the two methods can be at least a factor of state dimension. For policy evaluation, we study a simple family of problem instances and show that nominal (certainty equivalence principle) control also requires a factor of state dimension fewer samples than the policy gradient method to reach the same level of control performance on these instances. Furthermore, the gap persists even when employing baselines commonly used in practice. To the best of our knowledge, this is the first theoretical result which demonstrates a separation in the sample complexity between model-based and model-free methods on a continuous control task.
READ FULL TEXT