The Fundamental Learning Problem that Genetic Algorithms with Uniform Crossover Solve Efficiently and Repeatedly As Evolution Proceeds

07/15/2013
by   Keki M. Burjorjee, et al.
0

This paper establishes theoretical bonafides for implicit concurrent multivariate effect evaluation--implicit concurrency for short---a broad and versatile computational learning efficiency thought to underlie general-purpose, non-local, noise-tolerant optimization in genetic algorithms with uniform crossover (UGAs). We demonstrate that implicit concurrency is indeed a form of efficient learning by showing that it can be used to obtain close-to-optimal bounds on the time and queries required to approximately correctly solve a constrained version (k=7, η=1/5) of a recognizable computational learning problem: learning parities with noisy membership queries. We argue that a UGA that treats the noisy membership query oracle as a fitness function can be straightforwardly used to approximately correctly learn the essential attributes in O(log^1.585 n) queries and O(n log^1.585 n) time, where n is the total number of attributes. Our proof relies on an accessible symmetry argument and the use of statistical hypothesis testing to reject a global null hypothesis at the 10^-100 level of significance. It is, to the best of our knowledge, the first relatively rigorous identification of efficient computational learning in an evolutionary algorithm on a non-trivial learning problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro