The foundations of cost-sensitive causal classification

by   Wouter Verbeke, et al.

Classification is a well-studied machine learning task which concerns the assignment of instances to a set of outcomes. Classification models support the optimization of managerial decision-making across a variety of operational business processes. For instance, customer churn prediction models are adopted to increase the efficiency of retention campaigns by optimizing the selection of customers that are to be targeted. Cost-sensitive and causal classification methods have independently been proposed to improve the performance of classification models. The former considers the benefits and costs of correct and incorrect classifications, such as the benefit of a retained customer, whereas the latter estimates the causal effect of an action, such as a retention campaign, on the outcome of interest. This study integrates cost-sensitive and causal classification by elaborating a unifying evaluation framework. The framework encompasses a range of existing and novel performance measures for evaluating both causal and conventional classification models in a cost-sensitive as well as a cost-insensitive manner. We proof that conventional classification is a specific case of causal classification in terms of a range of performance measures when the number of actions is equal to one. The framework is shown to instantiate to application-specific cost-sensitive performance measures that have been recently proposed for evaluating customer retention and response uplift models, and allows to maximize profitability when adopting a causal classification model for optimizing decision-making. The proposed framework paves the way toward the development of cost-sensitive causal learning methods and opens a range of opportunities for improving data-driven business decision-making.


page 1

page 2

page 3

page 4


To do or not to do: cost-sensitive causal decision-making

Causal classification models are adopted across a variety of operational...

Profit Driven Decision Trees for Churn Prediction

Customer retention campaigns increasingly rely on predictive models to d...

Instance-Dependent Cost-Sensitive Learning for Detecting Transfer Fraud

Card transaction fraud is a growing problem affecting card holders world...

RISE: Robust Individualized Decision Learning with Sensitive Variables

This paper introduces RISE, a robust individualized decision learning fr...

How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign

We apply causal machine learning algorithms to assess the causal effect ...

A Causal Approach for Business Optimization: Application on an Online Marketplace

A common sales strategy involves having account executives (AEs) activel...

Off-Policy Evaluation with Policy-Dependent Optimization Response

The intersection of causal inference and machine learning for decision-m...

Please sign up or login with your details

Forgot password? Click here to reset