The External Validity of Combinatorial Samples and Populations

08/09/2021
by   Andre F. Ribeiro, et al.
0

The widely used 'Counterfactual' definition of Causal Effects was derived for unbiasedness and accuracy - and not generalizability. We propose a simple definition for the External Validity (EV) of Interventions, Counterfactual statements and Samples. We use the definition to discuss several issues that have baffled the counterfactual approach to effect estimation: out-of-sample validity, reliance on independence assumptions or estimation, concurrent estimation of many effects and full-models, bias-variance tradeoffs, statistical power, omitted variables, and connections to supervised and explaining techniques. Methodologically, the definition also allow us to replace the parametric and generally ill-posed estimation problems that followed the counterfactual definition by combinatorial enumeration problems on non-experimental samples. We use over 20 contemporary methods and simulations to demonstrate that the approach leads to accuracy gains in standard out-of-sample prediction, intervention effect prediction and causal effect estimation tasks. The COVID19 pandemic highlighted the need for learning solutions to provide general predictions in small samples - many times with missing variables. We also demonstrate applications in this pressing problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro