The Expressive Power of a Class of Normalizing Flow Models

05/31/2020 ∙ by Zhifeng Kong, et al. ∙ 0

Normalizing flows have received a great deal of recent attention as they allow flexible generative modeling as well as easy likelihood computation. While a wide variety of flow models have been proposed, there is little formal understanding of the representation power of these models. In this work, we study some basic normalizing flows and rigorously establish bounds on their expressive power. Our results indicate that while these flows are highly expressive in one dimension, in higher dimensions their representation power may be limited, especially when the flows have moderate depth.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.