The Elephant Quantum Walk

09/27/2017 ∙ by Giuseppe Di Molfetta, et al. ∙ 0

We explore the impact of long-range memory on the properties of a family of quantum walks in a one-dimensional lattice and discrete time, which can be understood as the quantum version of the classical "Elephant Random Walk" non-Markovian process. This Elephant Quantum Walk is robustly superballistic with the standard deviation showing a constant exponent, σ∝ t^3/ 2 , whatever the quantum coin operator, on which the diffusion coefficient is dependent. On the one hand, this result indicates that contrarily to the classical case, the degree of superdiffusivity in quantum non- Markovian processes of this kind is mainly ruled by the extension of memory rather than other microscopic parameters that explicitly define the process. On the other hand, these parameters reflect on the diffusion coefficient.



There are no comments yet.


page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.

Appendix A Illustration of the random and quantum models

In Fig. 3, we present an illustration of the random and quantum elephant approaches. At time , the elephant moves either to the right or to the left with probability and , respectively, Then, at , the elephant will take the previous set of displacements — which is only the case — and decide whether it will repeat that displacement with probability or do the opposite with probability . Generically, at time , the elephant selects (uniformly) one of the previous instants — in the case of the illustration — and determines to do the same or not afterwards.

For the quantum case, the rules are basically the same, i.e., at each time step , we have a collection of displacements that are the outcome of the interaction between the coin and the spin. At time , the evolution operator has into account a possible motion to the left and a possible motion to the right. For , — which defines the state at — the operator has to take into account the two states of the spin that can be assumed at and the fact that at one can have the previous state repeated or flipped so that at a given time the evolution operator corresponds to a equally weighted superposition — and then the uniform distribution — of each of the previous operators plus the opposite situation, conjugated with the operator at that time, as indicated by Eq. (7) in the main text.

Figure 3: Top: Depiction of the elephant random walk model. Down: Depiction of the elephant quantum walk model.

Appendix B Gaussianity and Diffusion Exponent

Regarding the statistical properties of this process, following the techniques introduced by Brun et al. (2003); Annabestani et al. (2009)

, we can transform the density matrix into a four dimensional column vector in order to use the affine map approach yielding:


where with are the Pauli matrices, and from which we define the vector with . The evolution of this vector reads


where is a matrix evolution operator, namely the Limbladian,


with matrix elements:

In this case, is chosen randomly at each time-step with a uniform probability distribution in the interval . The evolution matrix has to be averaged over the interval as:


Therefore, at each time step, the evolution is fully determined by:


It can be demonstrated that in the limit

, the eigenvalues of



where are positive real depending on the microscopic parameter .

Now, exploiting the stationary phase theorem, we can neglect terms like , with , , when time goes to infinity,


and in physical space, the above vector finally reads:


whence we can immediately identify a Gaussian for each row.222A Dirac delta is the limit distribution of a Gaussian with the variance going to zero.

From the last result it is possible to compute all of the cumulants of the elephant quantum walk. The first and second moment are now given by:




which corroborates the hyper-ballistic diffusion behavior. Since the distribution is Gaussian, all the other cumulants vanish.


  • Binder (1986) K. Binder, in Monte Carlo Methods in Statistical Physics (Springer, 1986) pp. 1–45.
  • Fishman (2013) G. Fishman, Monte Carlo: concepts, algorithms, and applications (Springer Science & Business Media, 2013).
  • Hoos and Stützle (2004) H. H. Hoos and T. Stützle, Stochastic local search: Foundations and applications (Elsevier, 2004).
  • Page (2001) L. Page, “Method for node ranking in a linked database,”  (2001), uS Patent 6,285,999.
  • Goldberg and Holland (1988)

    D. E. Goldberg and J. H. Holland, Machine learning 

    3, 95 (1988).
  • Schmidt (1985) P. Schmidt, Berichte der Bunsengesellschaft für physikalische Chemie 89, 721 (1985).
  • Van Kampen and Reinhardt (1983) N. G. Van Kampen and W. P. Reinhardt, “Stochastic processes in physics and chemistry,”  (1983).
  • Aharonov et al. (1993) Y. Aharonov, L. Davidovich,  and N. Zagury, Physical Review A 48, 1687 (1993)arXiv:1207.4535v1 .
  • Venegas-Andraca (2012) S. E. Venegas-Andraca, Quantum Information Processing 11, 1015 (2012).
  • Mohseni et al. (2008) M. Mohseni, P. Rebentrost, S. Lloyd,  and A. Aspuru-Guzik, The Journal of Chemical Physics 129, 11B603 (2008).
  • Debbasch et al. (2012) F. Debbasch, G. Di Molfetta, D. Espaze,  and V. Foulonneau, Physica Scripta 2012, 014044 (2012).
  • Di Molfetta et al. (2013) G. Di Molfetta, M. Brachet,  and F. Debbasch, Physical Review A 88, 042301 (2013).
  • Di Molfetta and Pérez (2016) G. Di Molfetta and A. Pérez, New Journal of Physics 18, 103038 (2016).
  • Márquez-Martín et al. (2017) I. Márquez-Martín, G. Di Molfetta,  and A. Pérez, Physical Review A 95, 042112 (2017).
  • Childs (2009) A. M. Childs, Physical Review Letters 102, 180501 (2009).
  • Childs and Goldstone (2004) A. M. Childs and J. Goldstone, Physical Review A 70, 042312 (2004).
  • Portugal (2013) R. Portugal, Quantum walks and search algorithms (Springer Science & Business Media, 2013).
  • Klages et al. (2008) R. Klages, G. Radons,  and I. M. Sokolov, Anomalous transport: foundations and applications (John Wiley & Sons, 2008).
  • Lacasta et al. (2004) A. Lacasta, J. M. Sancho, A. Romero, I. M. Sokolov,  and K. Lindenberg, Physical Review E 70, 051104 (2004).
  • Lutz (2003) E. Lutz, Physical Review A 67, 051402 (2003).
  • Cavagna et al. (2013) A. Cavagna, S. D. Queirós, I. Giardina, F. Stefanini,  and M. Viale, in Proc. R. Soc. B, Vol. 280 (The Royal Society, 2013) p. 20122484.
  • Viswanathan et al. (2011) G. M. Viswanathan, M. G. Da Luz, E. P. Raposo,  and H. E. Stanley, The physics of foraging: an introduction to random searches and biological encounters (Cambridge University Press, 2011).
  • Breuer (2012) H.-P. Breuer, Journal of Physics B: Atomic, Molecular and Optical Physics 45, 154001 (2012).
  • Apollaro et al. (2011) T. J. Apollaro, C. Di Franco, F. Plastina,  and M. Paternostro, Physical Review A 83, 032103 (2011).
  • Haikka et al. (2011) P. Haikka, J. D. Cresser,  and S. Maniscalco, Physical Review A 83, 012112 (2011).
  • Kitagawa et al. (2010) T. Kitagawa, M. S. Rudner, E. Berg,  and E. Demler, Physical Review A 82, 033429 (2010).
  • Bergmann (1984) G. Bergmann, Physics Reports 107, 1 (1984).
  • Rohde et al. (2012a) P. P. Rohde, G. K. Brennen,  and A. Gilchrist, arXiv preprint arXiv:1212.4540  (2012a).
  • Rohde et al. (2012b) P. P. Rohde, A. Fedrizzi,  and T. C. Ralph, Journal of Modern Optics 59, 710 (2012b).
  • Hufnagel et al. (2001) L. Hufnagel, R. Ketzmerick, T. Kottos,  and T. Geisel, Physical Review E 64, 012301 (2001).
  • Zhang et al. (2012) Z. Zhang, P. Tong, J. Gong,  and B. Li, Physical Review Letters 108, 070603 (2012).
  • Gholami and Lashkami (2017) E. Gholami and Z. M. Lashkami, Physical Review E 95, 022216 (2017).
  • Fitzsimons and Twamley (2005) J. Fitzsimons and J. Twamley, Physical Review A 72, 050301 (2005).
  • Tang and Cao (2017) D.-S. Tang and B.-Y. Cao, Applied Physics Letters 111, 113109 (2017).
  • Qin et al. (2014) P. Qin, C. Yin,  and S. Chen, Physical Review B 90, 054303 (2014).
  • Guarneri (1989) I. Guarneri, EPL (Europhysics Letters) 10, 95 (1989).
  • Ketzmerick et al. (1997) R. Ketzmerick, K. Kruse, S. Kraut,  and T. Geisel, Physical review letters 79, 1959 (1997).
  • Schütz and Trimper (2004) G. M. Schütz and S. Trimper, Physical Review E 70, 045101 (2004).
  • Rivas et al. (2014) A. Rivas, S. F. Huelga,  and M. B. Plenio, Reports on Progress in Physics 77, 094001 (2014).
  • Breuer et al. (2016) H.-P. Breuer, E.-M. Laine, J. Piilo,  and B. Vacchini, Reviews of Modern Physics 88, 021002 (2016).
  • Breuer et al. (2009) H.-P. Breuer, E.-M. Laine,  and J. Piilo, Physical review letters 103, 210401 (2009).
  • Laine et al. (2010) E.-M. Laine, J. Piilo,  and H.-P. Breuer, Physical Review A 81, 062115 (2010).
  • Hinarejos et al. (2014) M. Hinarejos, C. Di Franco, A. Romanelli,  and A. Pérez, Physical Review A 89, 052330 (2014).
  • Brun et al. (2003) T. Brun, H. Carteret,  and A. Ambainis, Physical Review A 67, 032304 (2003)arXiv:0210180 [quant-ph] .
  • Annabestani et al. (2009) M. Annabestani, S. J. Akhtarshenas,  and M. R. Abolhassani, Physical Review A 81,, 032321 (2009), 0910.1986 .
  • Tabor (1989) M. Tabor, Chaos and integrability in nonlinear dynamics: an introduction (Wiley, 1989).
  • Stützer et al. (2013) S. Stützer, T. Kottos, A. Tünnermann, S. Nolte, D. Christodoulides,  and A. Szameit, Optics Letters 38, 4675 (2013).
  • Billy et al. (2008) J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer,  and A. Aspect, Nature 453, 891 (2008).
  • Roati et al. (2008) G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno,  and M. Inguscio, Nature 453, 895 (2008).
  • Liu et al. (2011) B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer,  and J. Piilo, Nature Physics 7, 931 (2011).
  • Queirós (2007) S. D. Queirós, EPL (Europhysics Letters) 80, 30005 (2007).
  • Shenvi et al. (2003) N. Shenvi, J. Kempe,  and K. B. Whaley, Physical Review A 67, 052307 (2003).
  • Chakraborty et al. (2016) S. Chakraborty, L. Novo, A. Ambainis,  and Y. Omar, Physical Review Letters 116, 100501 (2016).