The Effectiveness of Data Augmentation for Detection of Gastrointestinal Diseases from Endoscopical Images

12/11/2017
by   Andrea Asperti, et al.
0

The lack, due to privacy concerns, of large public databases of medical pathologies is a well-known and major problem, substantially hindering the application of deep learning techniques in this field. In this article, we investigate the possibility to supply to the deficiency in the number of data by means of data augmentation techniques, working on the recent Kvasir dataset of endoscopical images of gastrointestinal diseases. The dataset comprises 4,000 colored images labeled and verified by medical endoscopists, covering a few common pathologies at different anatomical landmarks: Z-line, pylorus and cecum. We show how the application of data augmentation techniques allows to achieve sensible improvements of the classification with respect to previous approaches, both in terms of precision and recall.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset