The EAS approach to variable selection for multivariate response data in high-dimensional settings

07/10/2021 ∙ by Salil Koner, et al. ∙ 0

In this paper, we extend the epsilon admissible subsets (EAS) model selection approach, from its original construction in the high-dimensional linear regression setting, to an EAS framework for performing group variable selection in the high-dimensional multivariate regression setting. Assuming a matrix-Normal linear model we show that the EAS strategy is asymptotically consistent if there exists a sparse, true data generating set of predictors. Nonetheless, our EAS strategy is designed to estimate a posterior-like, generalized fiducial distribution over a parsimonious class of models in the setting of correlated predictors and/or in the absence of a sparsity assumption. The effectiveness of our approach, to this end, is demonstrated empirically in simulation studies, and is compared to other state-of-the-art model/variable selection procedures.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.