"The cracks that wanted to be a graph": application of image processing and Graph Neural Networks to the description of craquelure patterns

05/13/2019 ∙ by Oleksii Sidorov, et al. ∙ 0

Cracks on a painting is not a defect but an inimitable signature of an artwork which can be used for origin examination, aging monitoring, damage identification, and even forgery detection. This work presents the development of a new methodology and corresponding toolbox for the extraction and characterization of information from an image of a craquelure pattern. The proposed approach processes craquelure network as a graph. The graph representation captures the network structure via mutual organization of junctions and fractures. Furthermore, it is invariant to any geometrical distortions. At the same time, our tool extracts the properties of each node and edge individually, which allows to characterize the pattern statistically. We illustrate benefits from the graph representation and statistical features individually using novel Graph Neural Network and hand-crafted descriptors correspondingly. However, we also show that the best performance is achieved when both techniques are merged into one framework. We perform experiments on the dataset for paintings' origin classification and demonstrate that our approach outperforms existing techniques by a large margin.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 2

page 3

page 4

page 5

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.