The continuum-of-urns scheme, generalized beta and Indian buffet processes, and hierarchies thereof

12/31/2014 ∙ by Daniel M. Roy, et al. ∙ 0

We describe the combinatorial stochastic process underlying a sequence of conditionally independent Bernoulli processes with a shared beta process hazard measure. As shown by Thibaux and Jordan [TJ07], in the special case when the underlying beta process has a constant concentration function and a finite and nonatomic mean, the combinatorial structure is that of the Indian buffet process (IBP) introduced by Griffiths and Ghahramani [GG05]. By reinterpreting the beta process introduced by Hjort [Hjo90] as a measurable family of Dirichlet processes, we obtain a simple predictive rule for the general case, which can be thought of as a continuum of Blackwell-MacQueen urn schemes (or equivalently, one-parameter Hoppe urn schemes). The corresponding measurable family of Perman-Pitman-Yor processes leads to a continuum of two-parameter Hoppe urn schemes, whose ordinary component is the three-parameter IBP introduced by Teh and Görür [TG09], which exhibits power-law behavior, as further studied by Broderick, Jordan, and Pitman [BJP12]. The idea extends to arbitrary measurable families of exchangeable partition probability functions and gives rise to generalizations of the beta process with matching buffet processes. Finally, in the same way that hierarchies of Dirichlet processes were given Chinese restaurant franchise representations by Teh, Jordan, Beal, and Blei [Teh+06], one can construct representations of sequences of Bernoulli processes directed by hierarchies of beta processes (and their generalizations) using the stochastic process we uncover.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.