The Computational Complexity of Finding Separators in Temporal Graphs
Vertex separators, that is, vertex sets whose deletion disconnects two distinguished vertices in a graph, play a pivotal role in algorithmic graph theory. For instance, the concept of tree decompositions of graphs is tightly connected to the separator concept. For many realistic models of the real world, however, it is necessary to consider graphs whose edge set changes with time. More specifically, the edges are labeled with time stamps. In the literature, these graphs are referred to as temporal graphs, temporal networks, time-varying networks, edge-scheduled networks, etc. While there is an extensive literature on separators in "static" graphs, much less is known for the temporal setting. Building on previous work (e.g., Kempe et al. [STOC '00]), for the first time we systematically investigate the (parameterized) complexity of finding separators in temporal graphs. Doing so, we discover a rich landscape of computationally (fixed-parameter) tractable and intractable cases. In particular, we shed light on the so far seemingly overlooked fact that two frequently used models of temporal separation may lead to quite significant differences in terms of computational complexity. More specifically, considering paths in temporal graphs one may distinguish between strict paths (the time stamps along a path are strictly increasing) and non-strict paths (the time stamps along a path are monotonically non-decreasing). We observe that the corresponding strict case of temporal separators leads to several computationally much easier to handle cases than the non-strict case does.
READ FULL TEXT