The Complexity of Adversarially Robust Proper Learning of Halfspaces with Agnostic Noise
We study the computational complexity of adversarially robust proper learning of halfspaces in the distribution-independent agnostic PAC model, with a focus on L_p perturbations. We give a computationally efficient learning algorithm and a nearly matching computational hardness result for this problem. An interesting implication of our findings is that the L_∞ perturbations case is provably computationally harder than the case 2 ≤ p < ∞.
READ FULL TEXT