The Communication Complexity of Optimization

06/13/2019
by   Santosh S. Vempala, et al.
0

We consider the communication complexity of a number of distributed optimization problems. We start with the problem of solving a linear system. Suppose there is a coordinator together with s servers P_1, ..., P_s, the i-th of which holds a subset A^(i) x = b^(i) of n_i constraints of a linear system in d variables, and the coordinator would like to output x ∈R^d for which A^(i) x = b^(i) for i = 1, ..., s. We assume each coefficient of each constraint is specified using L bits. We first resolve the randomized and deterministic communication complexity in the point-to-point model of communication, showing it is Θ̃(d^2L + sd) and Θ̃(sd^2L), respectively. We obtain similar results for the blackboard model. When there is no solution to the linear system, a natural alternative is to find the solution minimizing the ℓ_p loss. While this problem has been studied, we give improved upper or lower bounds for every value of p > 1. One takeaway message is that sampling and sketching techniques, which are commonly used in earlier work on distributed optimization, are neither optimal in the dependence on d nor on the dependence on the approximation ϵ, thus motivating new techniques from optimization to solve these problems. Towards this end, we consider the communication complexity of optimization tasks which generalize linear systems. For linear programming, we first resolve the communication complexity when d is constant, showing it is Θ̃(sL) in the point-to-point model. For general d and in the point-to-point model, we show an Õ(sd^3 L) upper bound and an Ω̃(d^2 L + sd) lower bound. We also show if one perturbs the coefficients randomly by numbers as small as 2^-Θ(L), then the upper bound is Õ(sd^2 L) + poly(dL).

READ FULL TEXT

page 1

page 2

page 3

page 4

research
07/11/2023

ℓ_p-Regression in the Arbitrary Partition Model of Communication

We consider the randomized communication complexity of the distributed ℓ...
research
12/10/2018

On the Interrelation between Dependence Coefficients of Extreme Value Copulas

For extreme value copulas with a known upper tail dependence coefficient...
research
11/14/2022

The ℓ_p-Subspace Sketch Problem in Small Dimensions with Applications to Support Vector Machines

In the ℓ_p-subspace sketch problem, we are given an n× d matrix A with n...
research
11/21/2022

Upper and Lower Bounds on the Smoothed Complexity of the Simplex Method

The simplex method for linear programming is known to be highly efficien...
research
02/05/2015

Distributed Estimation of Generalized Matrix Rank: Efficient Algorithms and Lower Bounds

We study the following generalized matrix rank estimation problem: given...
research
10/05/2020

Optimal bounds for approximate counting

Storing a counter incremented N times would naively consume O(log N) bit...
research
07/29/2022

Communication Complexity of Collision

The Collision problem is to decide whether a given list of numbers (x_1,...

Please sign up or login with your details

Forgot password? Click here to reset