The combinatorial game nofil played on Steiner Triple Systems

03/24/2021
by   Melissa A. Huggan, et al.
0

We introduce an impartial combinatorial game on Steiner triple systems called Nofil. Players move alternately, choosing points of the triple system. If a player is forced to fill a block on their turn, they lose. We explore the play of Nofil on all Steiner triple systems up to order 15 and a sampling for orders 19, 21, and 25. We determine the optimal strategies by computing the nim-values for each game and its subgames. The game Nofil can be thought of in terms of play on a corresponding hypergraph. As game play progresses, the hypergraph shrinks and will eventually be equivalent to playing the game Node Kayles on an isomorphic graph. Node Kayles is well studied and understood. Motivated by this, we study which Node Kayles positions can be reached, i.e. embedded into a Steiner triple system. We prove necessary conditions and sufficient conditions for the existence of such graph embeddings and conclude that the complexity of determining the outcome of the game Nofil on Steiner triple systems is PSPACE-complete.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset