The Bernstein Function: A Unifying Framework of Nonconvex Penalization in Sparse Estimation

12/17/2013
by   Zhihua Zhang, et al.
0

In this paper we study nonconvex penalization using Bernstein functions. Since the Bernstein function is concave and nonsmooth at the origin, it can induce a class of nonconvex functions for high-dimensional sparse estimation problems. We derive a threshold function based on the Bernstein penalty and give its mathematical properties in sparsity modeling. We show that a coordinate descent algorithm is especially appropriate for penalized regression problems with the Bernstein penalty. Additionally, we prove that the Bernstein function can be defined as the concave conjugate of a φ-divergence and develop a conjugate maximization algorithm for finding the sparse solution. Finally, we particularly exemplify a family of Bernstein nonconvex penalties based on a generalized Gamma measure and conduct empirical analysis for this family.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset