The basins of attraction of the global minimizers of the non-convex sparse spikes estimation problem

11/29/2018
by   Yann Traonmilin, et al.
0

The sparse spike estimation problem consists in estimating a number of off-the-grid impulsive sources from under-determined linear measurements. Information theoretic results ensure that the minimization of a non-convex functional is able to recover the spikes for adequatly chosen measurements (deterministic or random). To solve this problem, methods inspired from the case of finite dimensional sparse estimation where a convex program is used have been proposed. Also greedy heuristics have shown nice practical results. However, little is known on the ideal non-convex minimization to perform. In this article, we study the shape of the global minimum of this non-convex functional: we give an explicit basin of attraction of the global minimum that shows that the non-convex problem becomes easier as the number of measurements grows. This has important consequences for methods involving descent algorithms (such as the greedy heuristic) and it gives insights for potential improvements of such descent methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset