The asymptotic joint distribution of the largest and the smallest singular values for random circulant matrices

09/06/2021
by   Gerardo Barrera, et al.
0

In this manuscript, we study the limiting distribution for the joint law of the largest and the smallest singular values for random circulant matrices with generating sequence given by independent and identically distributed random elements satisfying the so-called Lyapunov condition. Under an appropriated normalization, the joint law of the extremal singular values converges in distribution, as the matrix dimension tends to infinity, to an independent product of Rayleigh and Gumbel laws. The latter implies that a normalized condition number converges in distribution to a Fréchet law as the dimension of the matrix increases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro