The anatomy of Boris type solvers and large time-step plasma simulations

09/04/2021
by   Siu A. Chin, et al.
0

This work gives a Lie operator derivation of various Boris solvers via a detailed study of first and second-order trajectory errors in a constant magnetic field. These errors in the gyro-circle center and gyro-radius are the foundational basis for why Boris solvers existed, independent of any finite-difference schemes. The elimination of these errors then forces the second-order solver's trajectory to be exactly on the gyro-circle. By revisiting some historical calculations, it is found that many publications do not distinguish the poorly behaved first-order leap-frog solver with the correct second-order Boris algorithm. This work shows that this second-order Boris solver is much more accurate then previously thought and that its trajectory remains close to the exact orbit in a combined nonuniform electric and magnetic field at time-steps greater than the cyclotron period.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro