The algorithmic second law of thermodynamics
Gács' coarse-grained algorithmic entropy leverages universal computation to quantify the information content of any given physical state. Unlike the Boltzmann and Shannon-Gibbs entropies, it requires no prior commitment to macrovariables or probabilistic ensembles. Whereas earlier work had made loose connections between the entropy of thermodynamic systems and information-processing systems, the algorithmic entropy formally unifies them both. After adapting Gács' definition to Markov processes, we prove a very general second law of thermodynamics, and discuss its advantages over previous formulations. Finally, taking inspiration from Maxwell's demon, we model an information engine powered by compressible data.
READ FULL TEXT